scholarly journals Quantitative analysis of nanoscale electrical properties of CNT/PVDF nanocomposites by current sensing AFM

RSC Advances ◽  
2017 ◽  
Vol 7 (52) ◽  
pp. 32564-32573 ◽  
Author(s):  
V. Ozhukil Kollath ◽  
M. Arjmand ◽  
P. Egberts ◽  
U. Sundararaj ◽  
K. Karan

Probing 3D percolation of a CNT/polymer nanocomposite system with CS-AFM, supported by complementary techniques to understand the dispersion matrix.

2021 ◽  
Vol 13 ◽  
Author(s):  
S. K. Parida

: This presented review article is constructed to be an extensive source for polymer nanocomposite researchers covering the relation of structure with property, manufacturing techniques, and potential applications when a small number of nanosized particles are added to a host polymer matrix. The exceptional structural, mechanical, and electrical properties of polymer nanocomposites after the addition of inorganic solid nanoparticles are elucidated by the large surface area of doped nanoparticles that interact with host polymer matrices. Due to the generation of ideas, the conventional methods of preparation of polymer nanocomposites are made more interesting. Hence, this brief review presents a sketch of different synthesis techniques, characterization, applications, and safety concerns for polymer nanocomposites.


2020 ◽  
Vol 2 (10) ◽  
pp. 4702-4712
Author(s):  
Namrata Maslekar ◽  
Rabiatul A. Mat Noor ◽  
Rhiannon P. Kuchel ◽  
Yin Yao ◽  
Per B. Zetterlund ◽  
...  

The study focussed on synthesis of colloidally stable diamine functionalised graphene oxide (GO) with dangling free amine groups, and exhibited physicochemical and electrical properties of these functionalised sheets in a polymer-based nanocomposite.


2013 ◽  
Vol 284-287 ◽  
pp. 62-66
Author(s):  
Wan Akmal Izzati ◽  
Mohd Shafanizam ◽  
Yanuar Z. Arief ◽  
Mohamad Zul Hilmey Makmud ◽  
Zuraimy Adzis ◽  
...  

Polymer nanocomposites have been attracting attention among researchers as electrical insulating application from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there are a lot more to explore as the characteristic of partial discharge in nanocomposites is not clearly understood as well as the electrical properties of the nanocomposites. By adding a few amount of weight percentage (wt%) of the nano fillers, the physical, mechanical and electrical properties of polymers can be greatly enhanced. This is due to its amazing characteristic of having large specific area as a consequential from its nano sized particle that could enhance the electrical properties of the insulator. For instance, nano fillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2), play big role in providing good approach to increase dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper based on previous experimental works and studies. This paper provides reviews from related publications from year 1997 to 2011 including the results of experimental works which have been conducted by the authors with main focus on partial discharge characteristics in polymer nanocomposites, which demonstrates that research and utilization of polymer nanocomposites has well developed from past decades and will possess a high demand in future as electrical insulating material.


2006 ◽  
Vol 963 ◽  
Author(s):  
Guan Wang ◽  
Zhongkui Tan ◽  
Xueqing Liu ◽  
Vladimir Samuilov ◽  
Michael Dudley

ABSTRACTAn oxidation method has been applied to functionalize multiwalled carbon nanotubes with carboxylic acid (-COOH) group. Functionalized carbon nanotubes (f-MWNT) were used for the fabrication of conducting nanocomposite fibers by electrospinning, in comparison with the composite nanofibers made of un-functionalized carbon nanotubes (u-MWNT). Our results showed that the addition of f-MWNTs into polymer solution could increase the compatibility of MWNTs with the polymer matrix, and thus result in composite nanofibers with uniform diameters. Alignment of the composite nanofibers was achieved by using a rotating drum as the collector. F-MWNTs were found to align parallel to the axis direction of the nanofibers. Temperature-dependent DC electrical properties of a single composite fiber were investigated by a two-probe method. It was shown that the conductivity of the material could be significantly improved above a percolation threshold. The conductivity could be of ten orders of magnitude higher than the pure PVAc.


Sign in / Sign up

Export Citation Format

Share Document