One-dimensional water channels in lanthanum sulfate: a first-principles study

2017 ◽  
Vol 5 (38) ◽  
pp. 20188-20194 ◽  
Author(s):  
Kazuaki Toyoura ◽  
Hirotaka Tai ◽  
Naoyuki Hatada ◽  
Kunihiko Shizume ◽  
Tetsuya Uda

The stable structure and diffusion mechanism of water in lanthanum sulfate La2(SO4)3 have been theoretically analyzed in a first-principles manner based on the density functional theory (DFT).

Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25900-25911 ◽  
Author(s):  
Esmaeil Pakizeh ◽  
Jaafar Jalilian ◽  
Mahnaz Mohammadi

In this study, based on the density functional theory and semi-classical Boltzmann transport theory, we investigated the structural, thermoelectric, optical and phononic properties of the Fe2ZrP compound.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 100 ◽  
Author(s):  
Weiwei Wang ◽  
Dahuai Zheng ◽  
Mengyuan Hu ◽  
Shahzad Saeed ◽  
Hongde Liu ◽  
...  

Numerous studies have indicated that intrinsic defects in lithium niobate (LN) dominate its physical properties. In an Nb-rich environment, the structure that consists of a niobium anti-site with four lithium vacancies is considered the most stable structure. Based on the density functional theory (DFT), the specific configuration of the four lithium vacancies of LN were explored. The results indicated the most stable structure consisted of two lithium vacancies as the first neighbors and the other two as the second nearest neighbors of Nb anti-site in pure LN, and a similar stable structure was found in the doped LN. We found that the defects dipole moment has no direct contribution to the crystal polarization. Spontaneous polarization is more likely due to the lattice distortion of the crystal. This was verified in the defects structure of Mg2+, Sc3+, and Zr4+ doped LN. The conclusion provides a new understanding about the relationship between defect clusters and crystal polarization.


2010 ◽  
Vol 25 (12) ◽  
pp. 2317-2324 ◽  
Author(s):  
Hui-Yuan Wang ◽  
Wen-Ping Si ◽  
Shi-Long Li ◽  
Nan Zhang ◽  
Qi-Chuan Jiang

The formation enthalpy, electronic structures, and elastic moduli of the intermetallic compound Ti5Si3 with substitutions Zr, V, Nb, and Cr are investigated by using first-principles methods based on the density-functional theory. Our calculation shows that the site occupancy behaviors of alloying elements in Ti5Si3, determined by their atom radius, are consistent with the available experimental observations. Furthermore, using the Voigt–Reuss–Hill (VRH) approximation method, we obtained the bulk modulus B, shear modulus G, and the Young’s modulus E. Among these four substitutions, the V, Nb, and Cr substitutions can improve the ductility of Ti5Si3 effectively, while Zr substitution has little effect on the elastic properties of Ti5Si3. The elastic property variations of Ti5Si3 due to different substitutions are found to be correlated with the Me4d–Me4d antibonding and the strengthened Me4d–Si bonding in the solids.


2005 ◽  
Vol 864 ◽  
Author(s):  
Jinyu Zhang

AbstractUsing density functional theory (DFT) calculations within the generalized gradient approximation (GGA), we have investigated the structure, energies and diffusion behavior of Si defects including interstitial, vacancy, FFCD and divacancy in various charged states.


2005 ◽  
Vol 864 ◽  
Author(s):  
Scott A. Harrison ◽  
Thomas F. Edgar ◽  
Gyeong S. Hwang

AbstractBased on first principles density functional theory calculations, we identify the structure and diffusion pathway for a fluorine-silicon interstitial complex (F-Sii). We find the F-Sii complex to be most stable in the singly positive charge state at all Fermi leVels. At mid-gap, the complex is found to have a binding energy of 1.08 eV relative to bond-centered F+ and (110)-split Sii. We find the F-Sii complex has an overall migration barrier of 0.76 eV, which suggests that this complex may play an important role in fluorine diffusion. Our results should lead to more accurate models that describe the behavior of fluorine co-implants crystalline silicon.


RSC Advances ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 7941-7949 ◽  
Author(s):  
Naeem Shahzad ◽  
Akhtar Hussain ◽  
Naeem Mustafa ◽  
Nisar Ali ◽  
Mohammed Benali Kanoun ◽  
...  

Adsorption and dissociation mechanisms of H2S on a TiO2(001) surface were elucidated using first principles calculation based on the density functional theory.


2019 ◽  
Vol 489 (1) ◽  
pp. 62-64 ◽  
Author(s):  
D. P. Krylov ◽  
A. B. Kuznetsov

Temperature relations of b-factors for 18O/16O substitutions in TiO2 polymorphs have been determined using the density functional theory (DFT): 1000lnbrt(18O/16O) = 6,93039x - 0,08158x2 + 0,00116x3 + 0,08305*P, 1000lnbant(18O/16O) = 7,34275x - 0,09906x2 + 0,00153x3 + 0,08027*P, 1000lnbbrk(18O/16O) = 7,19088x - 009157x2 + 0,00139x3 + 0,07601*P, x = 106/T(K)2, P - pressure (GPa). The relations can be applied for isotope thermometry if combined with -factors of coexisting phases.


Sign in / Sign up

Export Citation Format

Share Document