scholarly journals Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders

2017 ◽  
Vol 5 (33) ◽  
pp. 17401-17412 ◽  
Author(s):  
Wolfgang Kunther ◽  
Sergio Ferreiro ◽  
Jørgen Skibsted

Calcium–silicate–hydrate phases have been synthesized with Ca/Si ratios of 0.83–1.50 and it is demonstrated that the compressive strengths of the C–S–H pastes increase for decreasing Ca/Si ratio for all samples and testing ages.

RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17369-17376
Author(s):  
Daosheng Sun ◽  
Ziwen Wang ◽  
Rui Ma ◽  
Aiguo Wang ◽  
Gaozhan Zhang

In this study, nano calcium silicate hydrate was used as an early strength agent to promote the compressive strength of concrete at 1 day.


2012 ◽  
Vol 568 ◽  
pp. 392-395
Author(s):  
Ming Feng Zhong ◽  
Da Gen Su ◽  
Yi Xiang Zhao

Hydration activity of waste ceramic polishing powder at autocalved condition were studied by IR, XRD, SEM and EDS in civil engineering. The results shown that autoclaved condition is beneficial to inspire hydration ability of polishing powder, the more active silicon and aluminium were dissolved, and they were converted into low Ca/Si ratio calcium silicate hydrate, whose ratio of Ca/Si was 1.58, and the compressive strength of autoclaved silicate product made by the ceramic polishing powder was higher than that of fly ash.


2014 ◽  
Vol 695 ◽  
pp. 647-650 ◽  
Author(s):  
Nafisa Tamanna ◽  
Norsuzailina Mohamed Sutan ◽  
Ibrahim Yakub ◽  
Delsye Teo Ching Lee ◽  
Ezzaq Farhan Ahmad

Recent studies have been carried out to utilize waste glass in construction as partial cement replacement. This paper investigates the formation of Calcium Silicate Hydrate (C-S-H) and strength characteristics of mortar in which cement is partially replaced with glass powder by replacement level of 10%, 20% and 30%. Mortar cubes containing varying particle sizes in the ranges of 150-75μm, 63-38 μm and lower than 38 μm and in a water to cement ratio of 0.45 and 0.40 have been prepared. Replacement by 10% cement with glass powder reveals high compressive strength and produces more C-S-H at 28 days than other levels of replacement.


2020 ◽  
Vol 12 (16) ◽  
pp. 6451
Author(s):  
María C. Rodríguez-Fernández ◽  
Juan D. Alonso ◽  
Carolina Montero ◽  
Juan F. Saldarriaga

Sludge from carwash wastewater treatment plants has been evaluated as substitute for lime paste, as well as its behavior in cement mortars. Dry sludge waste was used with (CSlud) and without (USlud) pretreatment and have been characterized. The pastes were prepared with weight replacement of 5, 10, 15, and 20% of sludge. The formation of calcium silicate hydrate was determined by TGA, both in lime and cement pastes. The compressive strength properties were evaluated in mortars. It was found the mixtures which present the best results were those of 5 and 10% for USlud, and 10 and 20% for CSlud.


2019 ◽  
Vol 39 (3) ◽  
pp. 248-260 ◽  
Author(s):  
Taher Abu-Lebdeh ◽  
Relly Victoria Virgil Petrescu ◽  
Moayyad Al-Nasra ◽  
Florian Ion Tiberiu Petrescu

This study investigated the influence of adding nano silica (SiO2) on the cement hydration process, particularly on the formation of calcium silicate hydrate (C-S-H) at different stages of hydration. The study investigated the effect of adding nano-silica on the mechanical properties of the hardened cement corresponding to the formation of C-S-H during the hydration process of a cement paste. Specimens made up of four different percentage of nano silica (0%, 1%, 3% and 5%) were tested at different stages of hydration ranging from 3 to 56 days. The effect of nano-silica on the compressive strength, stressstrain, and elastic modulus of nano-cement was examined using MTS and Forney testing machines. The signature phase and formation of C-S-H and calcium hydroxide (CH) were monitored using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The study also investigated the effect of curing method (vacuum and water curing) on the strength development. The experimental results show that the formation of calcium silicate hydrate (C-S-H) increases significantly during the early stages of hydration which correspond to the drastic increase in compressive strength. The formation of C-S-H continues to increase throughout the 56 days but at a moderate rate. The results reveal that 1% of nano silica by volume of cement is the optimum ratio that yields the maximum strength. The results also indicated that the strength of the traditional water cured specimens were higher than that of vacuum cured specimens.


2020 ◽  
Vol 10 ◽  
pp. 184798042091260
Author(s):  
Yuxia Suo ◽  
Rongxin Guo ◽  
Haiting Xia ◽  
Yang Yang ◽  
Feng Yan ◽  
...  

Graphene oxide/cement composite was prepared using a graphene oxide aqueous solution. The workability and mechanical properties of graphene oxide/cement composite with different concentrations for graphene oxide and the ratio of water to cement were investigated. The results observed were the fluidity of cement pastes decreased noticeably with the addition of graphene oxide and increased with the increase in the ratio of water to cement for all tested samples of different graphene oxide contents. It is indicated that a noticeable inverse correlation between the concentration of graphene oxide and fluidity was observed, and a positive linear relationship between the ratio of water to cement and fluidity was also obtained. The compressive strength of cement pastes significantly improved in the presence of an appropriate concentration of graphene oxide as compared to that of the cement paste without graphene oxide; this difference was due to the denser microstructure of graphene oxide/cement composite than that of the control specimens. With the combined analysis of X-ray diffraction and scanning electron microscopy with energy-dispersive spectrometry, the results showed that graphene oxide could promote and regulate the formation and connection of calcium hydroxide and calcium silicate hydrate during the hydration reaction, forming numerous regular and extremely compact plate-shaped crystals, and the compact plate-shaped microstructures constituted of not only calcium hydroxide and calcium silicate hydrate but also wrapped ettringite. This investigation will provide a flexible way to preparation of graphene oxide/cement composite with wanted fluidity and optimized compressive strength that promote the industry application of graphene oxide/cement composite.


2021 ◽  
pp. 105678952199187
Author(s):  
Yao Zhang ◽  
Qing Chen ◽  
J Woody Ju ◽  
Mathieu Bauchy

When subjected to high temperatures, cement-based materials can dehydrate, which, in turn, affects the mechanical property of the main binding phase (calcium silicate hydrate) at the atomic scale. However, the effects of high temperature on the tensile and compressive behavior of calcium silicate hydrate (C−S−H) grains under uniaxial loading remains poorly understood. In this work, based on reactive molecular simulations, the tensile strength, compressive strength, and stress-strain relations of C−S−H grains with four calcium/silicon (C/S) ratios (1.10, 1.33, 164, and 1.80) both under and after (residual properties) high temperatures are investigated. It is shown that C−S−H grains can shrink due to the water loss induced by high temperature, and a low C/S ratio can lead to a thermo-stable molecular structure. Meanwhile, the residual tensile strength can be enhanced, particularly the tensile strength in the z-direction. Upon the residual compressive strength, in the x and y directions, high temperature can decrease the residual compressive strength for C/S = 1.10 or 1.33 but has no apparent effect for C/S = 1.64 or 1.80. While in the z-direction, the residual compressive strength can be enhanced due to the reduction in the interlayer space. In addition, high temperature can improve the residual tensile ductility but has no obvious effect on the residual compressive stress-strain relations. As for the mechanical properties under high temperature, both the tensile and compressive strengths can be weakened except that the tensile strength in the z-direction can undergo an increasing trend when the temperature is below 800 K due to significant shrinkage in the z-direction. Moreover, high temperature can make stress-strain curves exhibit good plasticity. Discussion indicates that the strength degradation of C−S−H gels or cement paste exposure to high temperatures is likely caused by the increasing porosity and coarsening of the void or defect size.


Sign in / Sign up

Export Citation Format

Share Document