Near-infrared conjugated polymers for photoacoustic imaging-guided photothermal/chemo combination therapy

2017 ◽  
Vol 5 (27) ◽  
pp. 5479-5487 ◽  
Author(s):  
Yue Cao ◽  
Yannan Wu ◽  
Guannan Wang ◽  
Jingwen Yi ◽  
Chunlei Yu ◽  
...  

Conjugated polymers with intensive near-infrared absorption and high photothermal conversion efficiency have emerged as a new generation of photothermal therapy and photoacoustic imaging agents for cancer therapy.

Nanoscale ◽  
2019 ◽  
Vol 11 (19) ◽  
pp. 9760-9768 ◽  
Author(s):  
He Hu ◽  
Qi Yang ◽  
Simona Baroni ◽  
Hong Yang ◽  
Silvio Aime ◽  
...  

The Gd-TMV–PDA nanotheranostic reagents demonstrated highly r1-relaxivity of ∼80 mM−1 s−1 at 60 MHz, strong near-infrared absorption with high photothermal conversion efficiency (28.9%), excellent photoacoustic contrast and good biocompatibility.


2019 ◽  
Vol 7 (14) ◽  
pp. 2247-2251 ◽  
Author(s):  
Lu Li ◽  
Qingzhu Yang ◽  
Lei Shi ◽  
Nannan Zheng ◽  
Zeyu Li ◽  
...  

Novel phthalocyanine molecule 4OCSPC with deep NIR absorbance showed excellent photothermal therapy property for cancer cells.


2019 ◽  
Vol 7 (28) ◽  
pp. 4393-4401 ◽  
Author(s):  
Lina Sun ◽  
Ying Chen ◽  
Fei Gong ◽  
Qian Dang ◽  
Guangzhen Xiang ◽  
...  

Photothermal therapy (PTT) in the first near-infrared (NIR-I) window has made great progress in the treatment of solid tumors, while only a few PTT agents in the second NIR (NIR-II) region have been studied.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


2021 ◽  
Vol 4 (2) ◽  
pp. 2019-2029
Author(s):  
Li-Peng Zhang ◽  
Lin Kang ◽  
Xianqiang Li ◽  
Shiyang Liu ◽  
Tianlong Liu ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


Nanoscale ◽  
2021 ◽  
Author(s):  
Qing Xu ◽  
Danyang Li ◽  
Haijun Zhou ◽  
Biaoqi Chen ◽  
Junlei Wang ◽  
...  

We describe the synthesis of MnO2-coated porous Pt@CeO2 core–shell nanostructures (Pt@CeO2@MnO2) as a new theranostic nano-platform. The porous Pt cores endow the core–shell nanostructures with high photothermal conversion efficiency (80%)...


Author(s):  
Abdorreza Asrar ◽  
Zahra Sobhani ◽  
Mohammad Ali Behnam

Purpose: Photothermal therapy is a procedure that converts laser beam energy to heat so can disturb tumor cells. Carbon nanotubes (CNTs) have unique properties in absorption optical energy and could change optical power into heat in photothermal therapy procedures. Additionally, titanium dioxide (TiO2) NPs have a unique feature in absorbing and scattering light. Therefore, these mentioned NPs could play a synergistic role in the photothermal therapy method. Methods: CNTs and TiO2 NPs were injected into the melanoma tumor sites of cancerous mice. Then sites were excited using the laser beam (λ= 808nm, P= 2W, and I= 4W/cm2). Injected NPs caused hyperthermia in solid tumors. Tumor size assay, statistical analysis, and histopathological study of the treated cases were performed to assess the role of mentioned NPs in photothermal therapy of murine melanoma cancer. Results: The results showed that CNTs performed better than TiO2 NPs in destroying murine melanoma cancer cells in animals. Conclusion: The present study compared the photothermal activity of excited CNTs and TiO2 NPs in cancer therapy at the near-infrared spectrum of light. Tumors were destroyed selectively because of their weakened heat resistance versus normal tissue. Photothermal therapy of malignant melanoma through CNTs caused remarkable necrosis into the tumor tissues versus TiO2 NPs.


Sign in / Sign up

Export Citation Format

Share Document