Silicon nanowires decorated with gold nanoparticles via in situ reduction for photoacoustic imaging-guided photothermal cancer therapy

2019 ◽  
Vol 7 (28) ◽  
pp. 4393-4401 ◽  
Author(s):  
Lina Sun ◽  
Ying Chen ◽  
Fei Gong ◽  
Qian Dang ◽  
Guangzhen Xiang ◽  
...  

Photothermal therapy (PTT) in the first near-infrared (NIR-I) window has made great progress in the treatment of solid tumors, while only a few PTT agents in the second NIR (NIR-II) region have been studied.

2018 ◽  
Vol 24 (23) ◽  
pp. 2719-2728 ◽  
Author(s):  
Yi Liu ◽  
Wenhui Ma ◽  
Jing Wang

Gold nanoparticles (AuNPs) are promising biomedical agents in terms of both imaging and therapy, exhibiting excellent physical and chemical characteristics. The actions of AuNPs can be remotely controlled using strong near-infrared (NIR) light, associated with minimal lateral invasion. Employing the photoacoustic (PA) principle, AuNPs integrate imaging and temperature control, affording both diagnosis and treatment mediated by NIR light. We here review recent progress in the theranostic field employing AuNPs to both PA and photothermal ends.


2019 ◽  
Vol 7 (15) ◽  
pp. 2484-2492 ◽  
Author(s):  
Dong-Hui Zhao ◽  
Xiao-Quan Yang ◽  
Xiao-Lin Hou ◽  
Yang Xuan ◽  
Xian-Lin Song ◽  
...  

Polypeptide-engineering capped silver sulfide quantum dots were prepared and used for second near-infrared fluorescence and photoacoustic imaging, and the photothermal therapy of tumors.


Author(s):  
Sabrina N. Saiphoo ◽  
Cassidy M. Rose ◽  
Alexander T. Dunn ◽  
Dwij J. Padia ◽  
Muhammad Hasibul Hasan

Current cancer treatment options, including surgery, chemotherapy and radiation therapy, often cause damage to healthy tissue and reduce a patient's quality of life with well-known side effects, such as pain, infection and nerve damage. Recent research has shown that gold nanoparticles used as photothermal agents in photothermal therapy may pose as an alternative to traditional treatments. This great potential is due to their ability to selectively accumulate in cancerous tissue, efficiently absorb near-infrared light, and kill cancerous tissue without harming surrounding cells. Gold nanoparticles show promise in increasing treatment efficacy and reducing the side effects associated with cancer therapy. While recent studies show the potential of gold nanoparticles, the existing literature is limited in drawing comparisons between studies and practical use for photothermal therapy. This paper reviews notable studies on four common gold nanoparticles used in the therapeutic treatment of cancer: gold nanocages, gold nanospheres, gold nanorods, and gold nanoshells. By comparing key characteristics of the particles’, including their synthesis, toxicity, absorption spectrum, and selective photothermal lethality, gold nanospheres can be recommended for use in photothermal therapy. Although forms of each gold nanoparticle were found to have a low toxicity, gold nanospheres can be rapidly synthesized and appear to exceed in selective photothermal lethality and immature tumour accumulation. Due to these advantages in using gold nanospheres for photothermal therapy, cancer could be treated more effectively and improve patient prognosis.


2017 ◽  
Vol 5 (27) ◽  
pp. 5479-5487 ◽  
Author(s):  
Yue Cao ◽  
Yannan Wu ◽  
Guannan Wang ◽  
Jingwen Yi ◽  
Chunlei Yu ◽  
...  

Conjugated polymers with intensive near-infrared absorption and high photothermal conversion efficiency have emerged as a new generation of photothermal therapy and photoacoustic imaging agents for cancer therapy.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


2021 ◽  
Vol 4 (2) ◽  
pp. 2019-2029
Author(s):  
Li-Peng Zhang ◽  
Lin Kang ◽  
Xianqiang Li ◽  
Shiyang Liu ◽  
Tianlong Liu ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


Author(s):  
Abdorreza Asrar ◽  
Zahra Sobhani ◽  
Mohammad Ali Behnam

Purpose: Photothermal therapy is a procedure that converts laser beam energy to heat so can disturb tumor cells. Carbon nanotubes (CNTs) have unique properties in absorption optical energy and could change optical power into heat in photothermal therapy procedures. Additionally, titanium dioxide (TiO2) NPs have a unique feature in absorbing and scattering light. Therefore, these mentioned NPs could play a synergistic role in the photothermal therapy method. Methods: CNTs and TiO2 NPs were injected into the melanoma tumor sites of cancerous mice. Then sites were excited using the laser beam (λ= 808nm, P= 2W, and I= 4W/cm2). Injected NPs caused hyperthermia in solid tumors. Tumor size assay, statistical analysis, and histopathological study of the treated cases were performed to assess the role of mentioned NPs in photothermal therapy of murine melanoma cancer. Results: The results showed that CNTs performed better than TiO2 NPs in destroying murine melanoma cancer cells in animals. Conclusion: The present study compared the photothermal activity of excited CNTs and TiO2 NPs in cancer therapy at the near-infrared spectrum of light. Tumors were destroyed selectively because of their weakened heat resistance versus normal tissue. Photothermal therapy of malignant melanoma through CNTs caused remarkable necrosis into the tumor tissues versus TiO2 NPs.


Sign in / Sign up

Export Citation Format

Share Document