Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices

2017 ◽  
Vol 5 (14) ◽  
pp. 3427-3437 ◽  
Author(s):  
Yoshihiko Kanemitsu

This review summarizes the optical properties of lead-halide-perovskite thin films, single crystals, and solar-cell devices.

2020 ◽  
Vol 13 (6) ◽  
pp. 1888-1891
Author(s):  
Alexander Colsmann ◽  
Tobias Leonhard ◽  
Alexander D. Schulz ◽  
Holger Röhm

This comment analyzes pitfalls when investigating piezoresponse and ferroelectricity in organic-metal halide perovskite thin films.


2016 ◽  
Vol 4 (33) ◽  
pp. 7775-7782 ◽  
Author(s):  
Paul F. Ndione ◽  
Zhen Li ◽  
Kai Zhu

Spectroscopic ellipsometry analysis of optical transitions and optical constants in hybrid organic–inorganic perovskite alloys.


2019 ◽  
Vol 2 (2) ◽  
pp. 67
Author(s):  
Zhiya Dang ◽  
Duc Anh Dinh

Lead halide perovskites are the new rising generation of semiconductor materials due to their unique optical and electrical properties. The investigation of the interaction of halide perovskites and light is a key issue not only for understanding their photophysics but also for practical applications. Hence, tremendous efforts have been devoted to this topic and brunch into two: (i) decomposition of the halide perovskites thin films under light illumination; and (ii) influence of light soaking on their photoluminescence (PL) properties. In this review, we for the first time thoroughly compare the illumination conditions and the sample environment to correlate the PL changes and decomposition of perovskite under light illumination. In the case of vacuum and dry nitrogen, PL of the halide perovskite (MAPbI3–xClx, MAPbBr3–xClx, MAPbI3) thin films decreases due to the defects induced by light illumination, and under high excitations, the thin film even decomposes. In the presence of oxygen or moisture, light induces the PL enhancement of halide perovskite (MAPbI3) thin films at low light illumination, while increasing the excitation, which causes the PL to quench and perovskite thin film to decompose. In the case of mixed halide perovskite ((MA)Pb(BrxI1-x)3) light induces reversible segregation of Br domains and I domains. 


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yicheng Zhao ◽  
Peng Miao ◽  
Jack Elia ◽  
Huiying Hu ◽  
Xiaoxia Wang ◽  
...  

AbstractLight-induced halide segregation limits the bandgap tunability of mixed-halide perovskites for tandem photovoltaics. Here we report that light-induced halide segregation is strain-activated in MAPb(I1−xBrx)3 with Br concentration below approximately 50%, while it is intrinsic for Br concentration over approximately 50%. Free-standing single crystals of CH3NH3Pb(I0.65Br0.35)3 (35%Br) do not show halide segregation until uniaxial pressure is applied. Besides, 35%Br single crystals grown on lattice-mismatched substrates (e.g. single-crystal CaF2) show inhomogeneous segregation due to heterogenous strain distribution. Through scanning probe microscopy, the above findings are successfully translated to polycrystalline thin films. For 35%Br thin films, halide segregation selectively occurs at grain boundaries due to localized strain at the boundaries; yet for 65%Br films, halide segregation occurs in the whole layer. We close by demonstrating that only the strain-activated halide segregation (35%Br/45%Br thin films) could be suppressed if the strain is properly released via additives (e.g. KI) or ideal substrates (e.g. SiO2).


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7827
Author(s):  
Vanira Trifiletti ◽  
Sally Luong ◽  
Giorgio Tseberlidis ◽  
Stefania Riva ◽  
Eugenio S. S. Galindez ◽  
...  

Lead halide perovskites have been revolutionary in the last decade in many optoelectronic sectors. Their bismuth-based counterparts have been considered a good alternative thanks to their composition of earth-abundant elements, good chemical stability, and low toxicity. Moreover, their electronic structure is in a quasi-zero-dimensional (0D) configuration, and they have recently been explored for use beyond optoelectronics. A significant limitation in applying thin-film technology is represented by the difficulty of synthesizing compact layers with easily scalable methods. Here, the engineering of a two-step synthesis in an air of methylammonium bismuth iodide compact thin films is reported. The critical steps of the process have been highlighted so that the procedure can be adapted to different substrates and application areas.


2020 ◽  
Vol 8 (4) ◽  
pp. 1901041 ◽  
Author(s):  
Bart G. H. M. Groeneveld ◽  
Sampson Adjokatse ◽  
Olga Nazarenko ◽  
Hong-Hua Fang ◽  
Graeme R. Blake ◽  
...  

2021 ◽  
Author(s):  
Silvia M. Ferro ◽  
Merlinde Wobben ◽  
Bruno Ehrler

Ytterbium-doped lead halide perovskite (Yb3+:CsPbX3 with x = Cl or Cl/Br) nanocrystals and thin films have shown surprisingly efficient downconversion by quantum cutting with PLQYs up to 193%.


Nanoscale ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 6317-6327 ◽  
Author(s):  
Aurélien M. A. Leguy ◽  
Pooya Azarhoosh ◽  
M. Isabel Alonso ◽  
Mariano Campoy-Quiles ◽  
Oliver J. Weber ◽  
...  

The optical constants from the ellipsometry of single crystals of CH3NH3PbX3(X = I, Br, Cl) are interpreted with high levelab initioQSGW calculations.


Author(s):  
Khursheed Ahmad

In the last decade, energy crisis has become the most important topic for researchers. Energy requirements have increased drastically. To overcome the issue of energy crisis in near future, numerous efforts and sources have been developed. Therefore, solar energy has been considered the most promising energy source compared to other energy sources. There were different kinds of photovoltaic devices developed, but perovskite solar cells have been considered the most efficient and promising solar cell. The perovskite solar cells were invented in 2009 and crossed an excellent power conversion efficiency of 25%. However, it has a few major drawbacks, such as the presence of highly toxic lead (Pb) and poor stability. Hence, numerous efforts were made toward the replacement of Pb and highly stable perovskite solar cells in the last few years. Bismuth halide perovskite solar cell is one type of the replacement introduced to overcome these issues. In this chapter, I have reviewed the role of bismuth halide perovskite structures and their optoelectronic properties toward the development of perovskite solar cells.


Author(s):  
Zhiya Dang 1 ◽  
Duc Anh Dinh 1

Lead halide perovskites are the new rising generation of semiconductor materials due to theirunique optical and electrical properties. The investigation of the interaction of halide perovskites and light is a key issue not only for understanding theirphotophysicsbut also for practical applications. Hence, tremendous efforts have been devoted to this topic andbrunch into two:(i)decompositionof the halide perovskites thin films under light illumination and(ii)influence of light soaking on their photoluminescence (PL) properties. In this review, we for the first time thoroughly compare the illumination conditions and the sample environment to correlate the PL changes and decomposition of perovskite under light illumination. Inthe case of vacuum and dry nitrogen, PL of the halide perovskite ( PbI3–xClx, PbBr3–xClx, MAPbI3) thin films decreases due to the defects induced by light illumination, and under high excitations the thin film even decomposes. In thepresence of oxygen or moisture,light induces the PL enhancement of halide perovskite (MAPbI3) thin films at low light illumination, while increasing the excitationcauses the PL to quench and perovskite thin film to decompose. In the case of mixed halide perovskite (MAPb(BrxI1-x)3) light inducesreversible segregation of Br domains and I domains. 


Sign in / Sign up

Export Citation Format

Share Document