Organic solar cells based on a Cu2O/FBT-TH4 anode buffer layer with enhanced power conversion efficiency and ambient stability

2017 ◽  
Vol 5 (32) ◽  
pp. 8033-8040 ◽  
Author(s):  
Yaxiong Guo ◽  
Hongwei Lei ◽  
Liangbin Xiong ◽  
Borui Li ◽  
Guojia Fang

We report conjugated polymer FBT-TH4 modified Cu2O as an organic–inorganic integrated hole transport material (HTM) for the first time. The optimized OSCs show a high power conversion efficiency of up to 9.56% based on a model PffBT4T-2OD:PC71BM system. Meanwhile, the HTM significantly improved the long-term stability of the OSCs.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


Author(s):  
Minkyu Kyeong ◽  
Jinho Lee ◽  
Matyas Daboczi ◽  
Katherine Stewart ◽  
Huifeng Yao ◽  
...  

Functionalized polyethyleneimines that are compatible with non-fullerene acceptors have been developed by protecting the reactive amine groups, leading to non-fullerene solar cells with high power conversion efficiency and enhanced thermal stability.


Author(s):  
Eun-Cheol Lee ◽  
Zhihai Liu

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we improved the...


2020 ◽  
Vol 8 (44) ◽  
pp. 23239-23247
Author(s):  
Andy Man Hong Cheung ◽  
Han Yu ◽  
Siwei Luo ◽  
Zhen Wang ◽  
Zhenyu Qi ◽  
...  

This is the first time alkylthio chains are employed on Y6-like NFAs to achieve organic solar cells of power conversion efficiency higher than 16%.


2019 ◽  
Vol 9 (20) ◽  
pp. 4393 ◽  
Author(s):  
Jien Yang ◽  
Songhua Chen ◽  
Jinjin Xu ◽  
Qiong Zhang ◽  
Hairui Liu ◽  
...  

Perovskite solar cells (PSCs) employing organic-inorganic halide perovskite as active layers have attracted the interesting of many scientists since 2009. The power conversion efficiency (PCE) have pushed certified 25.2% in 2019 from initial 3.81% in 2009, which is much faster than that of any type of solar cell. In the process of optimization, many innovative approaches to improve the morphology of perovskite films were developed, aiming at elevate the power conversion efficiency of perovskite solar cells (PSCs) as well as long-term stability. In the context of PSCs research, the perovskite precursor solutions modified with different additives have been extensively studied, with remarkable progress in improving the whole performance. In this comprehensive review, we focus on the forces induced by additives between the cations and anions of perovskite precursor, such as hydrogen bonds, coordination or some by-product (e.g., mesophase), which will lead to form intermediate adduct phases and then can be converted into high quality films. A compact uniform perovskite films can not only upgrade the power conversion efficiency (PCE) of devices but also improve the stability of PSCs under ambient conditions. Therefore, strategies for the implementation of additives engineering in perovskites precursor solution will be critical for the future development of PSCs. How to manipulate the weak forces in the fabrication of perovskite film could help to further develop high-efficiency solar cells with long-term stability and enable the potential of future practical applications.


2015 ◽  
Vol 27 (43) ◽  
pp. 6969-6975 ◽  
Author(s):  
Lijun Huo ◽  
Tao Liu ◽  
Bingbing Fan ◽  
Zhiyuan Zhao ◽  
Xiaobo Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document