Three-dimensional hydrogen bonding between Landers and planar molecules facilitated by electrostatic interactions with Ni adatoms

2018 ◽  
Vol 54 (64) ◽  
pp. 8845-8848 ◽  
Author(s):  
Miao Yu ◽  
Youness Benjalal ◽  
Chong Chen ◽  
Nataliya Kalashnyk ◽  
Wei Xu ◽  
...  

Ni adatoms are at the origin of a self-assembled bicomponent molecular system on Au(111).

2000 ◽  
Vol 57 (1) ◽  
pp. o50-o51 ◽  
Author(s):  
Daniel E. Lynch ◽  
Ian McClenaghan

The structure of the title compound, C10H15ClN5O·0.5H2O, comprises non-planar molecules that associateviaN—H...N and N—H...O interactions to form a three-dimensional hydrogen-bonded array. The water molecule resides on a twofold axis and is also involved in the hydrogen-bonding network.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michela Quadrini

Abstract RNA molecules play crucial roles in various biological processes. Their three-dimensional configurations determine the functions and, in turn, influences the interaction with other molecules. RNAs and their interaction structures, the so-called RNA–RNA interactions, can be abstracted in terms of secondary structures, i.e., a list of the nucleotide bases paired by hydrogen bonding within its nucleotide sequence. Each secondary structure, in turn, can be abstracted into cores and shadows. Both are determined by collapsing nucleotides and arcs properly. We formalize all of these abstractions as arc diagrams, whose arcs determine loops. A secondary structure, represented by an arc diagram, is pseudoknot-free if its arc diagram does not present any crossing among arcs otherwise, it is said pseudoknotted. In this study, we face the problem of identifying a given structural pattern into secondary structures or the associated cores or shadow of both RNAs and RNA–RNA interactions, characterized by arbitrary pseudoknots. These abstractions are mapped into a matrix, whose elements represent the relations among loops. Therefore, we face the problem of taking advantage of matrices and submatrices. The algorithms, implemented in Python, work in polynomial time. We test our approach on a set of 16S ribosomal RNAs with inhibitors of Thermus thermophilus, and we quantify the structural effect of the inhibitors.


Nanoscale ◽  
2015 ◽  
Vol 7 (17) ◽  
pp. 8149-8158 ◽  
Author(s):  
Wen-Da Oh ◽  
Shun-Kuang Lua ◽  
Zhili Dong ◽  
Teik-Thye Lim

A novel CuBi2O4 consisting of self-assembled spherical nanocolumn arrays (CuB-H) was synthesized via a facile hydrothermal method.


2014 ◽  
Vol 16 (27) ◽  
pp. 13974-13983 ◽  
Author(s):  
V. N. Kuzovkov ◽  
G. Zvejnieks ◽  
E. A. Kotomin

The 3d structure of self-assembled and oppositely charged nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document