Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N2-to-NH3 fixation under ambient conditions

2019 ◽  
Vol 55 (18) ◽  
pp. 2684-2687 ◽  
Author(s):  
Tengteng Wu ◽  
Peipei Li ◽  
Huanbo Wang ◽  
Runbo Zhao ◽  
Qiang Zhou ◽  
...  

Oxygen-doped hollow carbon microtubes electrocatalyze the N2-to-NH3 fixation with a faradaic efficiency of 9.1% and a NH3 yield rate of 25.12 μg h−1 mgcat.−1 at −0.80 V and −0.85 V vs. RHE, respectively.

2020 ◽  
Vol 56 (14) ◽  
pp. 2107-2110 ◽  
Author(s):  
Fengyi Wang ◽  
Xu Lv ◽  
Xiaojuan Zhu ◽  
Juan Du ◽  
Siyu Lu ◽  
...  

Bi nanodendrite acts as an efficient electrocatalyst for ambient N2-to-NH3 with NH3 yield rate of 25.86 μg h−1 mg−1cat. and faradaic efficiency of 10.8% at −0.60 V and −0.55 V versus RHE, respectively.


2018 ◽  
Vol 54 (81) ◽  
pp. 11427-11430 ◽  
Author(s):  
Hehan Huang ◽  
Li Xia ◽  
Xifeng Shi ◽  
Abdullah M. Asiri ◽  
Xuping Sun

An Ag nanosheet acts as a highly active electrocatalyst for N2-to-NH3 fixation. In 0.1 M HCl, this catalyst attains a high Faradaic efficiency of 4.8% and a NH3 yield rate of 4.62 × 10−11 mol s−1 cm−2 at −0.60 V vs. RHE.


2019 ◽  
Vol 55 (96) ◽  
pp. 14474-14477 ◽  
Author(s):  
Chengbo Li ◽  
Shiyong Mou ◽  
Xiaojuan Zhu ◽  
Fengyi Wang ◽  
Yuting Wang ◽  
...  

Dendritic Cu behaves as an efficient electrocatalyst for ambient N2-to-NH3 fixation with a high Faradaic efficiency of 15.12% and a large NH3 yield rate of 25.63 μg h−1 mgcat.−1 at −0.40 V versus reversible hydrogen electrode in 0.1 M HCl.


2020 ◽  
Vol 8 (4) ◽  
pp. 2099-2104 ◽  
Author(s):  
Silong Chen ◽  
Haeseong Jang ◽  
Jia Wang ◽  
Qing Qin ◽  
Xien Liu ◽  
...  

MoFe-PC exhibits a high yield rate and faradaic efficiency for NH3 electrosynthesis in acidic electrolytes due to the multicomponent active sites and inherent porous structure.


2019 ◽  
Vol 7 (43) ◽  
pp. 24760-24764 ◽  
Author(s):  
Hongtao Xie ◽  
Qin Geng ◽  
Xiaojuan Zhu ◽  
Yonglan Luo ◽  
Le Chang ◽  
...  

PdP2-reduced graphene oxide hybrid is efficient for ambient electrocatalytic N2-to-NH3 fixation with an NH3 yield rate of 30.3 μg h−1 mgcat.−1 and a faradaic efficiency of 12.56%.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenyi Li ◽  
Ke Li ◽  
Yixing Ye ◽  
Shengbo Zhang ◽  
Yanyan Liu ◽  
...  

AbstractThe electrocatalytic nitrogen (N2) reduction reaction (NRR) relies on the development of highly efficient electrocatalysts and electrocatalysis systems. Herein, we report a non-loading electrocatalysis system, where the electrocatalysts are dispersed in aqueous solution rather than loading them on electrode substrates. The system consists of aqueous Ag nanodots (AgNDs) as the catalyst and metallic titanium (Ti) mesh as the current collector for electrocatalytic NRR. The as-synthesized AgNDs, homogeneously dispersed in 0.1 M Na2SO4 solution (pH = 10.5), can achieve an NH3 yield rate of 600.4 ± 23.0 μg h−1 mgAg−1 with a faradaic efficiency (FE) of 10.1 ± 0.7% at −0.25 V (vs. RHE). The FE can be further improved to be 20.1 ± 0.9% at the same potential by using Ti mesh modified with oxygen vacancy-rich TiO2 nanosheets as the current collector. Utilizing the aqueous AgNDs catalyst, a Ti plate based two-electrode configured flow-type electrochemical reactor was developed to achieve an NH3 yield rate of 804.5 ± 30.6 μg h−1 mgAg−1 with a FE of 8.2 ± 0.5% at a voltage of −1.8 V. The designed non-loading electrocatalysis system takes full advantage of the AgNDs’ active sites for N2 adsorption and activation, following an alternative hydrogenation mechanism revealed by theoretical calculations.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 692
Author(s):  
Yan Du ◽  
Xiao Chen ◽  
Ji Qi ◽  
Pan Wang ◽  
Changhai Liang

The electrocatalytic hydrogenation (ECH) of biomass-derived levulinic acid (LA) is a promising strategy to synthetize fine chemicals under ambient conditions by replacing the thermocatalytic hydrogenation at high temperature and high pressure. Herein, various metallic electrodes were investigated in the ECH of LA in a H-type divided cell. The effects of potential, electrolyte concentration, reactant concentration, and temperature on catalytic performance and Faradaic efficiency were systematically explored. The high conversion of LA (93%) and excellent “apparent” selectivity to valeric acid (VA) (94%) with a Faradaic efficiency of 46% can be achieved over a metallic lead electrode in 0.5 M H2SO4 electrolyte containing 0.2 M LA at an applied voltage of −1.8 V (vs. Ag/AgCl) for 4 h. The combination of adsorbed LA and adsorbed hydrogen (Hads) on the surface of the metallic lead electrode is key to the formation of VA. Interestingly, the reaction performance did not change significantly after eight cycles, while the surface of the metallic lead cathode became rough, which may expose more active sites for the ECH of LA to VA. However, there was some degree of corrosion for the metallic lead cathode in this strong acid environment. Therefore, it is necessary to improve the leaching-resistance of the cathode for the ECH of LA in future research.


2019 ◽  
Vol 1 (3) ◽  
pp. 961-964 ◽  
Author(s):  
Kun Jia ◽  
Yuan Wang ◽  
Qi Pan ◽  
Benhe Zhong ◽  
Yonglan Luo ◽  
...  

C-TiO2 is efficient for electrochemical N2 fixation to NH3 in 0.1 M Na2SO4, achieving a faradaic efficiency of 1.84% with an NH3 yield of 16.22 μg h−1 mgcat.−1 at a potential of −0.7 V vs RHE.


Author(s):  
Peiei Li ◽  
Dan Cheng ◽  
Xiaohua Zhu ◽  
Meiling Liu ◽  
Youyu Zhang

Abstract Compared with the traditional Haber-Bosch process, electrochemical N2-to-NH3 reduction affords an eco-friendly and sustainable alternative to ambient NH3 synthesis with the aid of efficient electrocatalysts. In this work, partial oxidation of MnS to obtain the MnS-Mn3O4 is proved as a promising noble-free electrocatalysts of N2to NH3 fixation at ambient conditions. When tested in 0.1 M Na2SO4, the electrochemical N2 reduction reaction performance of MnS-Mn3O4 is improved comparing with the MnS, which achieves large NH3 yield of 16.74 μg h–1 mgcat.–1 and a high Faradaic efficiency of 5.72%. It also exhibits excellent selectivity of N2-to-NH3 and strong long-term electrochemical stabil


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3052
Author(s):  
Hilmar Guzmán ◽  
Daniela Roldán ◽  
Adriano Sacco ◽  
Micaela Castellino ◽  
Marco Fontana ◽  
...  

Inspired by the knowledge of the thermocatalytic CO2 reduction process, novel nanocrystalline CuZnAl-oxide based catalysts with pyramidal mesoporous structures are here proposed for the CO2 electrochemical reduction under ambient conditions. The XPS analyses revealed that the co-presence of ZnO and Al2O3 into the Cu-based catalyst stabilize the CuO crystalline structure and introduce basic sites on the ternary as-synthesized catalyst. In contrast, the as-prepared CuZn- and Cu-based materials contain a higher amount of superficial Cu0 and Cu1+ species. The CuZnAl-catalyst exhibited enhanced catalytic performance for the CO and H2 production, reaching a Faradaic efficiency (FE) towards syngas of almost 95% at −0.89 V vs. RHE and a remarkable current density of up to 90 mA cm−2 for the CO2 reduction at −2.4 V vs. RHE. The physico-chemical characterizations confirmed that the pyramidal mesoporous structure of this material, which is constituted by a high pore volume and small CuO crystals, plays a fundamental role in its low diffusional mass-transfer resistance. The CO-productivity on the CuZnAl-catalyst increased at more negative applied potentials, leading to the production of syngas with a tunable H2/CO ratio (from 2 to 7), depending on the applied potential. These results pave the way to substitute state-of-the-art noble metals (e.g., Ag, Au) with this abundant and cost-effective catalyst to produce syngas. Moreover, the post-reaction analyses demonstrated the stabilization of Cu2O species, avoiding its complete reduction to Cu0 under the CO2 electroreduction conditions.


Sign in / Sign up

Export Citation Format

Share Document