scholarly journals Communication—Partial Oxidation of MnS for Synergistic Electrocatalysis of N2-to-NH3 Fixation at Ambient Conditions

Author(s):  
Peiei Li ◽  
Dan Cheng ◽  
Xiaohua Zhu ◽  
Meiling Liu ◽  
Youyu Zhang

Abstract Compared with the traditional Haber-Bosch process, electrochemical N2-to-NH3 reduction affords an eco-friendly and sustainable alternative to ambient NH3 synthesis with the aid of efficient electrocatalysts. In this work, partial oxidation of MnS to obtain the MnS-Mn3O4 is proved as a promising noble-free electrocatalysts of N2to NH3 fixation at ambient conditions. When tested in 0.1 M Na2SO4, the electrochemical N2 reduction reaction performance of MnS-Mn3O4 is improved comparing with the MnS, which achieves large NH3 yield of 16.74 μg h–1 mgcat.–1 and a high Faradaic efficiency of 5.72%. It also exhibits excellent selectivity of N2-to-NH3 and strong long-term electrochemical stabil

2019 ◽  
Vol 55 (29) ◽  
pp. 4266-4269 ◽  
Author(s):  
Jinxiu Zhao ◽  
Jiajia Yang ◽  
Lei Ji ◽  
Huanbo Wang ◽  
Hongyu Chen ◽  
...  

Defect-rich fluorographene behaves as a metal-free catalyst for the artificial conversion of N2 to NH3 at ambient conditions. In 0.1 M Na2SO4, it achieves a faradaic efficiency (FE) of 4.2% with an NH3 formation rate (RNH3) of 9.3 μg h−1 mgcat.−1 at −0.7 V vs. RHE, with strong long-term electrochemical durability.


2018 ◽  
Vol 54 (42) ◽  
pp. 5323-5325 ◽  
Author(s):  
Xiaoping Zhang ◽  
Rong-Mei Kong ◽  
Huitong Du ◽  
Lian Xia ◽  
Fengli Qu

A VN nanowire array on carbon cloth (VN/CC) as a high-performance catalyst for the nitrogen reduction reaction (NRR) affords high ammonia yield (2.48 × 10−10 mol−1 s−1 cm−2) and faradaic efficiency (3.58%) at −0.3 V versus RHE in 0.1 M HCl.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1777 ◽  
Author(s):  
Ruijie Guo ◽  
Min Hu ◽  
Weiqing Zhang ◽  
Jia He

Exploration of efficient catalysts is a priority for the electrochemical nitrogen reduction reaction (NRR) in order to receive a high product yield rate and faradaic efficiency of NH3, under ambient conditions. In the present contribution, the binding free energy of N2, NNH, and NH2 were used as descriptors to screen the potential NRR electrocatalyst among different single or binuclear transition metal atoms on N-doped nanoporous graphene. Results showed that the binuclear Mo catalyst might exhibit the highest catalytic activity. Further free energy profiles confirmed that binuclear Mo catalysts possess the lowest potential determining step (hydrogenation of NH2* to NH3). The improved activities could be ascribed to a down-shift of the density of states for Mo atoms. This investigation could contribute to the design of a highly active NRR electrocatalyst.


2019 ◽  
Author(s):  
Anku Guha ◽  
Sreekanth Narayanru ◽  
Nisheal M. Kaley ◽  
D. Krishna Rao ◽  
Jagannath Mondal ◽  
...  

<p>Development of methods for economically feasible greener ammonia (NH<sub>3</sub>) production is gaining tremendous scientific attention. NH<sub>3</sub> has its importance in fertilizer industry and it is envisaged as a safer liquid hydrogen carrier for futuristic energy resources. Here, an aqueous electrolysis based NH<sub>3</sub> production in ambient conditions is reported, which yields high faradaic efficiency (~12%) NH<sub>3 </sub><i>via</i> nitrogen reduction reaction (NRR) at lower over potentials (~ -0.6V <i>vs.</i> RHE or -1.1V <i>vs.</i> Ag/AgCl). Polycrystalline copper (Cu) and gold (Au) are used as electrodes for electrochemical NRR, where the electrolyte which yields high amount of NH<sub>3 </sub>(~41 µmol/L) is 5M LiClO<sub>4</sub> in water with Cu as working electrode. A detailed study conducted here establishes the role of Li<sup>+</sup> in stabilizing nitrogen near to the working electrode - augmenting the NRR in comparison to its competitor - hydrogen evolution reaction, and a mechanistic insight in to the phenomenon is provided. <sup>15</sup>N<sub>2</sub> assisted labeling experiments are also conducted to confirm the formation of ammonia <i>via</i> NRR. This study opens up the possibilities of developing economically feasible electrodes for electrochemical NRR at lower energies with only transient modifications of electrodes during the electrolysis, unlike the studies reported on complex electrodes or electrolytes designed for NRR in aqueous medium to suppress the hydrogen generation. </p>


2019 ◽  
Author(s):  
Anku Guha ◽  
Sreekanth Narayanru ◽  
Nisheal M. Kaley ◽  
D. Krishna Rao ◽  
Jagannath Mondal ◽  
...  

<p>Development of methods for economically feasible greener ammonia (NH<sub>3</sub>) production is gaining tremendous scientific attention. NH<sub>3</sub> has its importance in fertilizer industry and it is envisaged as a safer liquid hydrogen carrier for futuristic energy resources. Here, an aqueous electrolysis based NH<sub>3</sub> production in ambient conditions is reported, which yields high faradaic efficiency (~12%) NH<sub>3 </sub><i>via</i> nitrogen reduction reaction (NRR) at lower over potentials (~ -0.6V <i>vs.</i> RHE or -1.1V <i>vs.</i> Ag/AgCl). Polycrystalline copper (Cu) and gold (Au) are used as electrodes for electrochemical NRR, where the electrolyte which yields high amount of NH<sub>3 </sub>(~41 µmol/L) is 5M LiClO<sub>4</sub> in water with Cu as working electrode. A detailed study conducted here establishes the role of Li<sup>+</sup> in stabilizing nitrogen near to the working electrode - augmenting the NRR in comparison to its competitor - hydrogen evolution reaction, and a mechanistic insight in to the phenomenon is provided. <sup>15</sup>N<sub>2</sub> assisted labeling experiments are also conducted to confirm the formation of ammonia <i>via</i> NRR. This study opens up the possibilities of developing economically feasible electrodes for electrochemical NRR at lower energies with only transient modifications of electrodes during the electrolysis, unlike the studies reported on complex electrodes or electrolytes designed for NRR in aqueous medium to suppress the hydrogen generation. </p>


2021 ◽  
Author(s):  
Damilola Ologunagba ◽  
Shyam Kattel

Electrochemical nitrogen reduction reaction (ENRR) at ambient conditions is beneficial compared to energy intensive thermochemical Haber-Bosch process for NH3 production. Here, periodic density functional theory (DFT) calculations are carried out...


2014 ◽  
Vol 4 (5) ◽  
pp. 1436-1445 ◽  
Author(s):  
Takao Gunji ◽  
Govindachetty Saravanan ◽  
Toyokazu Tanabe ◽  
Takashi Tsuda ◽  
Masahiro Miyauchi ◽  
...  

Anatase-type titania-supported intermetallic PtPb nanoparticles synthesized through a wet-chemical route showed a long-term, stable, and improved oxygen reduction reaction performance.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Fu ◽  
Peter Richardson ◽  
Kangkang Li ◽  
Hai Yu ◽  
Bing Yu ◽  
...  

AbstractAchieving more meaningful N2 conversion by reducing the energy input and carbon footprint is now being investigated through a method of N2 fixation instead of the Haber–Bosch process. Unfortunately, the electrochemical N2 reduction reaction (NRR) method as a rising approach currently still shows low selectivity (Faradaic efficiency < 10%) and high-energy consumption [applied potential at least − 0.2 V versus the reversible hydrogen electrode (RHE)]. Here, the role of molybdenum aluminum boride single crystals, belonging to a family of ternary transition metal aluminum borides known as MAB phases, is reported for the electrochemical NRR for the first time, at a low applied potential (− 0.05 V versus RHE) under ambient conditions and in alkaline media. Due to the unique nano-laminated crystal structure of the MAB phase, these inexpensive materials have been found to exhibit excellent electrocatalytic performances (NH3 yield: 9.2 µg h−1 cm−2 mg cat. −1 , Faradaic efficiency: 30.1%) at the low overpotential, and to display a high chemical stability and sustained catalytic performance. In conjunction, further mechanism studies indicate B and Al as main-group metals show a highly selective affinity to N2 due to the strong interaction between the B 2p/Al 3p band and the N 2p orbitals, while Mo exhibits specific catalytic activity toward the subsequent reduction reaction. Overall, the MAB-phase catalyst under the synergy of the elements within ternary compound can suppress the hydrogen evolution reaction and achieve enhanced NRR performance. The significance of this work is to provide a promising candidate in the future synthesis of ammonia.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Sun ◽  
Zizhao Deng ◽  
Xi-Ming Song ◽  
Hui Li ◽  
Zihang Huang ◽  
...  

AbstractElectrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions. Here, we report the synthesis of nanosized Bi2O3 particles grown on functionalized exfoliated graphene (Bi2O3/FEG) via a facile electrochemical deposition method. The obtained free-standing Bi2O3/FEG achieves a high Faradaic efficiency of 11.2% and a large NH3 yield of 4.21 ± 0.14 $$ \upmu{\text{g}}_{{{\text{NH}}_{3} }} $$ μ g NH 3  h−1 cm−2 at − 0.5 V versus reversible hydrogen electrode in 0.1 M Na2SO4, better than that in the strong acidic and basic media. Benefiting from its strong interaction of Bi 6p band with the N 2p orbitals, binder-free characteristic, and facile electron transfer, Bi2O3/FEG achieves superior catalytic performance and excellent long-term stability as compared with most of the previous reported catalysts. This study is significant to design low-cost, high-efficient Bi-based electrocatalysts for electrochemical ammonia synthesis.


2021 ◽  
Author(s):  
Shaoxiong Li ◽  
Yonglan Luo ◽  
Luchao Yue ◽  
Ting Shuai Li ◽  
Yan Wang ◽  
...  

Ambient electrochemical N2 reduction offers a promising alternative for the energy-intensive Haber-Bosch process toward renewable NH3 synthesis in aqueous media but needs efficient electrocatalysts to enable the N2 reduction reaction...


Sign in / Sign up

Export Citation Format

Share Document