First-generation antipsychotic haloperidol: optical absorption measurement and structural, electronic, and optical properties of its anhydrous monoclinic crystal by first-principle approaches

2018 ◽  
Vol 42 (16) ◽  
pp. 13629-13640 ◽  
Author(s):  
Geancarlo Zanatta ◽  
Mauricélio Bezerra da Silva ◽  
José J. A. da Silva ◽  
Regina C. R. dos Santos ◽  
Francisco A. M. Sales ◽  
...  

Application of the Density Functional Theory for the structural, electronic and optical properties of haloperidol crystal.

2021 ◽  
Author(s):  
Perveen Akhtar ◽  
M. Junaid Iqbal Khan

Abstract Current study contains the results of the structural, electronic, and optical properties of the Ti doped MoS2. We perform this research using the density functional theory where we employ PBE-GGA approximation in the Wien2k code. We substitute Mo atoms with Ti atoms and calculated structural, electronic, and optical properties. The results of PDOS and TDOS indicate that Ti 3d-states help in tuning the electronic properties. Optical absorption is blue shifted upon adding Ti contents to the host MoS2. An increase in refractive index and dielectric constant is observed. However, absorption and conductivity is improved for the 5.55% Ti concentration which points that Ti:MoS2 material may be used for fabrication of the optoelectronic, photonic, and photodetector and photovoltaic devices.


SPIN ◽  
2020 ◽  
Vol 10 (02) ◽  
pp. 2050014
Author(s):  
H. Absike ◽  
H. Labrim ◽  
B. Hartiti ◽  
H. Ez-Zahraouy

In this work, the structural, electronic and optical properties of Si-doped barium chalcogenide [barium sulfide (BaS)] with different Si concentrations ([Formula: see text]) are investigated by the first-principles calculations based on the density functional theory (DFT). The band structures, charge densities and complex dielectric functions of the pure as well as Si-doped BaS were presented and analyzed in detail using TB-mBJ approach by WIEN2k package. It is found that silicon concentration can control the bandgap by reducing it to values around 1.4[Formula: see text]eV and 1.6[Formula: see text]eV for 12.5% and 6.25% of Si-doped BaS, respectively. The electron charge density indicates the ionic bonding between silicon and sulfur atoms due to the high electronegativity between them. In fact, the results show that the absorption peaks of Si-doped BaS are enhanced compared with pure BaS. These results suggest that the Ba[Formula: see text]SixS original structure displays excellent physical properties thereby revealing that it is a promising material in advanced optoelectronic and solar cell applications.


2020 ◽  
Vol 557 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Husnu Koc ◽  
Selami Palaz ◽  
Sevket Simsek ◽  
Amirullah M. Mamedov ◽  
Ekmel Ozbay

In the present paper, we have investigated the electronic structure of some sillenites - Bi12MO20 (M = Ti, Ge, and Si) compounds based on the density functional theory. The mechanical and optical properties of Bi12MO20 have also been computed. The second-order elastic constants have been calculated, and the other related quantities have also been estimated in the present work. The band gap trend in Bi12MO20 can be understood from the nature of their electronic structures. The obtained electronic band structure for all Bi12MO20 compounds is semiconductor in nature. Similar to other oxides, there is a pronounced hybridization of electronic states between M-site cations and anions in Bi12MO20. Based on the obtained electronic structures, we further calculate the frequency-dependent dielectric function and other optical functions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
D.P. Xiong ◽  
S.L. Zhou ◽  
M. He ◽  
Q. Wang ◽  
W. Zhang ◽  
...  

Abstract The structural, electronic and optical properties of BexZn1−xO alloys were studied using the density functional theory and Hubbard-U method. Uo;p = 10.2 eV for O 2p and UZn;d = 1.4 eV for Zn 3d were adopted as the Hubbard U values. For BexZn1−x O alloys, the lattice constants a and c decrease linearly as Be concentration increases, the bandgap increases with a large bowing parameter of 6.95 eV, the formation enthalpies have the maximum value with Be concentration at 0.625, corresponding to the possible Be concentration to form phase separation. These calculations comply well with the experimental and other theoretical results. Furthermore, optical properties, such as dielectric function ∈(ω), reflectivity R(ω), absorption coefficient α(ω), were calculated and discussed for BexZn1−x O alloys with the incident photon energy ranging from 0 eV to 30 eV.


2010 ◽  
Vol 663-665 ◽  
pp. 195-198 ◽  
Author(s):  
Xue Mei Cai ◽  
Yuan Luo

The electronic and optical properties of hexagonal wurtzite AlN doped with Zn and Mg are studied based on the density functional theory. The density of states, dielectric function and absorption spectra are calculated using plane-wave ultrasoft pseudo-potential and the generalized gradient approximation (GGA). The absorption peaks are found during 0-13 eV and 43-48 eV in Mg doped AlN, while in Zn doped AlN, only during 0-15eV. The absorption peak about 43-48 eV found in Mg doped AlN is due to the transition of the deep 2p energy level in Mg to conduction band. The first peak of the dielectric imaginary part is related to the transition of the doped atoms. The peak of the dielectric imaginary part and absorption peak appears about 8 eV is due to the transition of N 2p to Al 3p state. Results show that the electronic and the optical properties of hexagonal wurtzite AlN are directly related to the electronic structure of the impurities in the crystal.


RSC Advances ◽  
2015 ◽  
Vol 5 (30) ◽  
pp. 23320-23325 ◽  
Author(s):  
E. Gordanian ◽  
S. Jalali-Asadabadi ◽  
Iftikhar Ahmad ◽  
S. Rahimi ◽  
M. Yazdani-Kachoei

In this article we explore the effects of dangling bonds and diameter on the electronic properties of the wurtzite InAs nanowires (NWs) using the density functional theory.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1705 ◽  
Author(s):  
Guofeng Yang ◽  
Rui Sun ◽  
Yan Gu ◽  
Feng Xie ◽  
Yu Ding ◽  
...  

A comprehensive insight into the electronic and optical properties of small-lattice-mismatched InSe-GeTe heterobilayer (HBL) is performed based on the density functional theory (DFT) with van der Waals corrections from first-principles perspective. The optimization of most stable geometric stacking mode for the InSe-GeTe HBL is demonstrated. In addition, it is found that the InSe-GeTe HBL forms a type-II heterostructure of staggered-gap band alignment, resulting in an indirect band gap of 0.78 eV, which could be employed as a separator for electron-hole pairs. Moreover, the influence of biaxial strain on the electronic and optical properties of the InSe-GeTe HBL are systematically explored by calculating the band structures, density of states (PDOS), electron density differences, and optical absorption spectra of InSe-GeTe HBL under compressive and tensile biaxial strains. The results indicate that the electronic structures and optical performance of InSe-GeTe HBL could be modulated by changing the biaxial strain conveniently. Our findings provide new opportunities for the novel InSe-GeTe HBL to be applied in the electronic and optoelectronic fields.


Sign in / Sign up

Export Citation Format

Share Document