Waterborne reduced graphene oxide dispersed bio-polyesteramide nanocomposites: an approach towards eco-friendly anticorrosive coatings

2019 ◽  
Vol 43 (12) ◽  
pp. 4706-4720 ◽  
Author(s):  
Mohd Irfan ◽  
Shahidul Islam Bhat ◽  
Sharif Ahmad

RGO dispersed waterborne soy polyester amide nanocomposites were formulated utilizing a solventless VOC free green approach for use as low cost anticorrosive coatings.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


2018 ◽  
Vol 42 (3) ◽  
pp. 2081-2088 ◽  
Author(s):  
Man Zhang ◽  
Wei Hong ◽  
Ruinan Xue ◽  
Lingzhi Li ◽  
Guanbo Huang ◽  
...  

At present, low-cost and efficient electrocatalysts for accelerating the oxygen reduction reaction in fuel cells are highly desired.


RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 35004-35011 ◽  
Author(s):  
Suling Yang ◽  
Gang Li ◽  
Chen Qu ◽  
Guifang Wang ◽  
Dan Wang

A new kind of ZnO nanoparticle/N-doped reduced graphene oxide nanocomposite (ZnONPs/N-rGO) was synthesized through a low temperature, low-cost and one step hydrothermal process.


2019 ◽  
Vol 297 ◽  
pp. 31-39 ◽  
Author(s):  
Pooria Moozarm Nia ◽  
Ebrahim Abouzari-Lotf ◽  
Pei Meng Woi ◽  
Yatimah Alias ◽  
Teo Ming Ting ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13722-13731 ◽  
Author(s):  
Satish Kasturi ◽  
Sri Ramulu Torati ◽  
Yun Ji Eom ◽  
Syafiq Ahmad ◽  
Byong-June Lee ◽  
...  

Herein, we have reported the real-time photodegradation of methylene blue, an organic pollutant, in the presence of sunlight at an ambient temperature using a platinum-decorated reduced graphene oxide (rGO/Pt) nanocomposite.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 902 ◽  
Author(s):  
Cláudia Silva ◽  
Frank Simon ◽  
Peter Friedel ◽  
Petra Pötschke ◽  
Cordelia Zimmerer

A new approach using X-ray photoelectron spectroscopy (XPS) was employed to give insight into the reduction of graphene oxide (GO) using a green approach with polydopamine (PDA). In this approach, the number of carbon atoms bonded to OH and to nitrogen in PDA is considered and compared to the total intensity of the signal resulting from OH groups in polydopamine-reduced graphene oxide (PDA-GO) to show the reduction. For this purpose, GO and PDA-GO with different times of reduction were prepared and characterized by Raman Spectroscopy and XPS. The PDA layer was removed to prepare reduced graphene oxide (RGO) and the effect of all chemical treatments on the thermal and electrical properties of the materials was studied. The results show that the complete reduction of the OH groups in GO occurred after 180 min of reaction. It was also concluded that Raman spectroscopy is not well suited to determine if the reduction and restoration of the sp2 structure occurred. Moreover, a significant change in the thermal stability was not observed with the chemical treatments. Finally, the electrical powder conductivity decreased after reduction with PDA, increasing again after its removal.


Sign in / Sign up

Export Citation Format

Share Document