Aptamer-recognized carbohydrates on the cell membrane revealed by super-resolution microscopy

Nanoscale ◽  
2018 ◽  
Vol 10 (16) ◽  
pp. 7457-7464 ◽  
Author(s):  
Yingying Jing ◽  
Mingjun Cai ◽  
Haijiao Xu ◽  
Lulu Zhou ◽  
Qiuyan Yan ◽  
...  

By using dSTORM, aptamer-recognized method was compared with lectin-recognized method on visualizing the detailed structure of GalNAc at the nanometer scale.

2018 ◽  
Vol 54 (30) ◽  
pp. 3735-3738 ◽  
Author(s):  
Anila Hoskere A. ◽  
Sreejesh Sreedharan ◽  
Firoj Ali ◽  
Carl G. Smythe ◽  
Jim A. Thomas ◽  
...  

A new physiologically benign and cell membrane permeable BODIPY based molecular probe, MB-Sn, specifically senses intracellular hydrogen polysulfides (H2Sn, n > 1) localized in the endoplasmic reticulum.


Nano Letters ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 2662-2670 ◽  
Author(s):  
Esther Wertz ◽  
Benjamin P. Isaacoff ◽  
Jessica D. Flynn ◽  
Julie S. Biteen

Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 880-887 ◽  
Author(s):  
Yaron M. Sigal ◽  
Ruobo Zhou ◽  
Xiaowei Zhuang

Super-resolution microscopy has overcome a long-held resolution barrier—the diffraction limit—in light microscopy and enabled visualization of previously invisible molecular details in biological systems. Since their conception, super-resolution imaging methods have continually evolved and can now be used to image cellular structures in three dimensions, multiple colors, and living systems with nanometer-scale resolution. These methods have been applied to answer questions involving the organization, interaction, stoichiometry, and dynamics of individual molecular building blocks and their integration into functional machineries in cells and tissues. In this Review, we provide an overview of super-resolution methods, their state-of-the-art capabilities, and their constantly expanding applications to biology, with a focus on the latter. We will also describe the current technical challenges and future advances anticipated in super-resolution imaging.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jason Sims ◽  
Peter Schlögelhofer ◽  
Marie-Therese Kurzbauer

Visualization of meiotic chromosomes and the proteins involved in meiotic recombination have become essential to study meiosis in many systems including the model plant Arabidopsis thaliana. Recent advances in super-resolution technologies changed how microscopic images are acquired and analyzed. New technologies enable observation of cells and nuclei at a nanometer scale and hold great promise to the field since they allow observing complex meiotic molecular processes with unprecedented detail. Here, we provide an overview of classical and advanced sample preparation and microscopy techniques with an updated Arabidopsis meiotic atlas based on super-resolution microscopy. We review different techniques, focusing on stimulated emission depletion (STED) nanoscopy, to offer researchers guidance for selecting the optimal protocol and equipment to address their scientific question.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 42-51
Author(s):  
S. S. Ryabichko ◽  
◽  
A. N. Ibragimov ◽  
L. A. Lebedeva ◽  
E. N. Kozlov ◽  
...  

2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


2015 ◽  
Vol 9 (1-2) ◽  
pp. 161-170 ◽  
Author(s):  
Martin Lehmann ◽  
Gregor Lichtner ◽  
Haider Klenz ◽  
Jan Schmoranzer

Sign in / Sign up

Export Citation Format

Share Document