Processing and manufacturing of graphene-based microsupercapacitors

2018 ◽  
Vol 2 (10) ◽  
pp. 1750-1764 ◽  
Author(s):  
Guofeng Zhang ◽  
Yuyang Han ◽  
Changxiang Shao ◽  
Nan Chen ◽  
Guoqiang Sun ◽  
...  

Portable electronic devices and electric vehicles have greatly stimulated the development of micro-sized energy storage devices.

2020 ◽  
Vol 11 ◽  
pp. 662-670
Author(s):  
Matangi Sricharan ◽  
Bikesh Gupta ◽  
Sreejesh Moolayadukkam ◽  
H S S Ramakrishna Matte

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50 mV·s−1.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012041
Author(s):  
Jarapala Ramesh Babu ◽  
Manas Ranjan Nayak ◽  
B. Mangu

Abstract Due to the rapid increase of environmental pollution caused by automobiles. To decrease pollution and to save our resources, there is an alternator to use an electric vehicle instead of a gasoline engine. The main drawback of a gasoline engine of compared to the electric vehicle can polluter noise efficiency durability. When it comes to durability, efficiency, and acceleration capabilities of electric vehicles, they are more impressive. The electric vehicles involve HEVs and BEVs. Generally, ultra-capacitor, solar Photovoltaic (PV) system, batters, regenerative braking systems and flywheel are utilized in HEVs as energy storage devices. All energy storage devices are linked to this distinct dc-dc converter scheme for raising input sources’ voltage. In past few decades, most HEVs have incorporated multi-input converters in order to enhance their reliability and efficiency. There are several distinct multi-input dc-dc converter schemas utilized in HEVs. This research discusses their current and future trends as well as energy storage devices.


2016 ◽  
Vol 4 (34) ◽  
pp. 13228-13234
Author(s):  
Inho Nam ◽  
Jongseok Park ◽  
Seongjun Bae ◽  
Soomin Park ◽  
Young Geun Yoo ◽  
...  

The new energy storage technology proposed here includes an endoskeleton architecture similar to vertebrates, which (1) provides flexibility for future mobile/human integrated electrics, (2) ensures the scalability of devices for the storage of fluctuating energy sources and (3) solves safety issues associated with energy storage devices in electric vehicles.


2014 ◽  
Vol 2 (15) ◽  
pp. 2646-2656 ◽  
Author(s):  
Kuldeep Rana ◽  
Jyoti Singh ◽  
Jong-Hyun Ahn

Graphene, a monolayer of carbon atoms arranged in a honeycomb structure, is a unique material with outstanding properties that may be useful in applications ranging from electronic devices to energy storage devices.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Cao ◽  
Yun Gong ◽  
Wenhao Wang ◽  
Mingzhou Chen ◽  
Junhe Yang ◽  
...  

Fiber-shaped supercapacitors (FSCs) are promising power sources for wearable electronic devices due to their small size, excellent flexibility and deformability. The performance of FSCs has been severely affected by the...


2020 ◽  
Vol 4 (11) ◽  
pp. 3290-3301
Author(s):  
Parthiban Pazhamalai ◽  
Karthikeyan Krishnamoorthy ◽  
Vimal Kumar Mariappan ◽  
Arunprasath Sathyaseelan ◽  
Sang-Jae Kim

Two-dimensional ReS2 nanostructures as an electrode for energy storage devices can be charged using solar cells which can efficiently power electronic devices for a long time, improving its effectiveness for the development of backup energy systems.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5958-5992
Author(s):  
Jahidul Islam ◽  
Faisal I. Chowdhury ◽  
Join Uddin ◽  
Rifat Amin ◽  
Jamal Uddin

With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries are emerging as the most promising energy supplier among all of the energy storage devices due to high energy and power densities with good cycling stability.


2013 ◽  
Vol 1 (2) ◽  
pp. 277-292 ◽  
Author(s):  
Zhong-Shuai Wu ◽  
Xinliang Feng ◽  
Hui-Ming Cheng

Abstract The current development trend towards miniaturized portable electronic devices has significantly increased the demand for ultrathin, flexible and sustainable on-chip micro-supercapacitors that have enormous potential to complement, or even to replace, micro-batteries and electrolytic capacitors. In this regard, graphene-based micro-supercapacitors with a planar geometry are promising micro-electrochemical energy-storage devices that can take full advantage of planar configuration and unique features of graphene. This review summarizes the latest advances in on-chip graphene-based planar interdigital micro-supercapacitors, from the history of their development, representative graphene-based materials (graphene sheets, graphene quantum dots and graphene hybrids) for their manufacture, typical microfabrication strategies (photolithography techniques, electrochemical methods, laser writing, etc.), electrolyte (aqueous, organic, ionic and gel), to device configuration (symmetric and asymmetric). Finally, the perspectives and possible development directions of future graphene-based micro-supercapacitors are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document