scholarly journals Controlled self-assembly of glycoprotein complex in snail mucus from lubricating liquid to elastic fiber

RSC Advances ◽  
2018 ◽  
Vol 8 (25) ◽  
pp. 13806-13812 ◽  
Author(s):  
Tianyi Zhong ◽  
Liu Min ◽  
Zhiyuan Wang ◽  
Feng Zhang ◽  
Baoqi Zuo

Terrestrial snail could intelligently employ elastic fibers clinging itself onto the inverted smooth plate.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akira Minami ◽  
Yuka Fujita ◽  
Jun Goto ◽  
Ayano Iuchi ◽  
Kosei Fujita ◽  
...  

AbstractReduction of elastin in the skin causes various skin diseases as well as wrinkles and sagging with aging. Sialidase is a hydrolase that cleaves a sialic acid residue from sialoglycoconjugate. Cleavage of sialic acid from microfibrils by the sialidase isozyme Neu1 facilitates elastic fiber assembly. In the present study, we showed that a lower layer of the dermis and muscle showed relatively intense sialidase activity. The sialidase activity in the skin decreased with aging. Choline and geranate (CAGE), one of the ionic liquids, can deliver the sialidase subcutaneously while maintaining the enzymatic activity. The elastin level in the dermis was increased by applying sialidase from Arthrobacter ureafaciens (AUSA) with CAGE on the skin for 5 days in rats and senescence-accelerated mice prone 1 and 8. Sialidase activity in the dermis was considered to be mainly due to Neu2 based on the expression level of sialidase isozyme mRNA. Transdermal administration of Neu2 with CAGE also increased the level of elastin in the dermis. Therefore, not only Neu1 but also Neu2 would be involved in elastic fiber assembly. Transdermal administration of sialidase is expected to be useful for improvement of wrinkles and skin disorders due to the loss of elastic fibers.


Author(s):  
Leslie Baumann ◽  
Eric F Bernstein ◽  
Anthony S Weiss ◽  
Damien Bates ◽  
Shannon Humphrey ◽  
...  

Abstract Elastin is the main component of elastic fibers, which provide stretch, recoil, and elasticity to the skin. Normal levels of elastic fiber production, organization, and integration with other cutaneous extracellular matrix proteins, proteoglycans, and glycosaminoglycans are integral to maintaining healthy skin structure, function, and youthful appearance. Although elastin has very low turnover, its production decreases after individuals reach maturity and it is susceptible to damage from many factors. With advancing age and exposure to environmental insults, elastic fibers degrade. This degradation contributes to the loss of the skin’s structural integrity; combined with subcutaneous fat loss, this results in looser, sagging skin, causing undesirable changes in appearance. The most dramatic changes occur in chronically sun-exposed skin, which displays sharply altered amounts and arrangements of cutaneous elastic fibers, decreased fine elastic fibers in the superficial dermis connecting to the epidermis, and replacement of the normal collagen-rich superficial dermis with abnormal clumps of solar elastosis material. Disruption of elastic fiber networks also leads to undesirable characteristics in wound healing, and the worsening structure and appearance of scars and stretch marks. Identifying ways to replenish elastin and elastic fibers should improve the skin’s appearance, texture, resiliency, and wound-healing capabilities. However, few therapies are capable of repairing elastic fibers or substantially reorganizing the elastin/microfibril network. This review describes the clinical relevance of elastin in the context of the structure and function of healthy and aging skin, wound healing, and scars and introduces new approaches being developed to target elastin production and elastic fiber formation.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 173 ◽  
Author(s):  
Wassim Fhayli ◽  
Quentin Boëté ◽  
Nadjib Kihal ◽  
Valérie Cenizo ◽  
Pascal Sommer ◽  
...  

Elastic fibers (90% elastin, 10% fibrillin-rich microfibrils) are synthesized only in early life and adolescence mainly by the vascular smooth muscle cells through the cross-linking of its soluble precursor, tropoelastin. Elastic fibers endow the large elastic arteries with resilience and elasticity. Normal vascular aging is associated with arterial remodeling and stiffening, especially due to the end of production and degradation of elastic fibers, leading to altered cardiovascular function. Several pharmacological treatments stimulate the production of elastin and elastic fibers. In particular, dill extract (DE) has been demonstrated to stimulate elastin production in vitro in dermal equivalent models and in skin fibroblasts to increase lysyl oxidase–like-1 (LOXL-1) gene expression, an enzyme contributing to tropoelastin crosslinking and elastin formation. Here, we have investigated the effects of a chronic treatment (three months) of aged male mice with DE (5% or 10% v/v, in drinking water) on the structure and function of the ascending aorta. DE treatment, especially at 10%, of aged mice protected pre-existing elastic lamellae, reactivated tropoelastin and LOXL-1 expressions, induced elastic fiber neo-synthesis, and decreased the stiffness of the aging aortic wall, probably explaining the reversal of the age-related cardiac hypertrophy also observed following the treatment. DE could thus be considered as an anti-aging product for the cardiovascular system.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Naveen Kumar ◽  
Pramod Kumar ◽  
Satheesha Nayak Badagabettu ◽  
Ranjini Kudva ◽  
Sudarshan Surendran ◽  
...  

Background. Unequal distribution of dermal collagen and elastic fibers in different orientations of skin is reported to be one of the multifocal causes of scar related complications. Present study is to understand the correlation pattern between collagen in horizontal (CH) and in vertical (CV) directions as well as that of elastic in horizontal (EH) and vertical (EV) directions.Materials and Method. A total of 320 skin samples were collected in two orientations from suprascapular, anterior chest, lateral chest, anterior abdominal wall, and inguinal regions of 32 human cadavers. Spearman correlation coefficient (r) was calculated between the variables (CH,CV,EH, andEV).Results. Significant positive correlation betweenCHandCV, and betweenEHandEVobserved in all 5 areas tested. A negative correlation betweenCVandEVat suprascapular, lateral chest, and inguinal regions and negative correlation betweenCHandEHat anterior chest and anterior abdominal wall have been identified.Conclusion. Knowledge of asymmetric content of dermal collagen and elastic fibers together with the varied strength and degree of association in the given area provides guidelines to the dermatologists and aesthetic surgeons in placing elective incisions in the direction maximally utilizing the anatomical facts for aesthetically pleasing result.


1994 ◽  
Vol 107 (9) ◽  
pp. 2623-2634 ◽  
Author(s):  
J.M. Hurle ◽  
G. Corson ◽  
K. Daniels ◽  
R.S. Reiter ◽  
L.Y. Sakai ◽  
...  

In this work we have analyzed the presence of elastic components in the extracellular matrices of the developing chick leg bud. The distributions of elastin and fibrillin were studied immunohistochemically in whole-mount preparations using confocal laser microscopy. The association of these constituents of the elastic matrix with other components of the extracellular matrix was also studied, using several additional antibodies. Our results reveal the transient presence of an elastin-rich scaffold of extracellular matrix fibrillar material in association with the establishment of the cartilaginous skeleton of the leg bud. The scaffold consisted of elastin-positive fibers extending from the ectodermal surface of the limb to the central cartilage-forming regions and between adjacent cartilages. Fibrillin immunolabeling was negative in this fibrillar scaffold while other components of the extracellular matrix including: tenascin, laminin and collagens type I, type III and type VI; appeared codistributed with elastin in some regions of the scaffold. Progressive changes in the spatial pattern of distribution of the elastin-positive scaffold were detected in explant cultures in which one expects a modification in the mechanical stresses of the tissues related to growth. A scaffold of elastin comparable to that found in vivo was also observed in high-density micromass cultures of isolated limb mesodermal cells. In this case the elastic fibers are observed filling the spaces located between the cartilaginous nodules. The fibers become reoriented and attach to the ectodermal basal surface when an ectodermal fragment is located at the top of the growing micromass. Our results suggest that the formation of the cartilaginous skeleton of the limb involves the segregation of the undifferentiated limb mesenchyme into chondrogenic and elastogenic cell lineages. Further, a role for the elastic fiber scaffold in coordinating the size and the spatial location of the cartilaginous skeletal elements within the limb bud is also suggested from our observations.


2006 ◽  
Vol 291 (2) ◽  
pp. H804-H812 ◽  
Author(s):  
José M. González ◽  
Ana M. Briones ◽  
Beatriz Somoza ◽  
Craig J. Daly ◽  
Elisabet Vila ◽  
...  

Resistance artery narrowing and stiffening are key elements in the pathogenesis of essential hypertension, but their origin is not completely understood. In mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR), we have shown that inward remodeling is associated with abnormal elastic fiber organization, leading to smaller fenestrae in the internal elastic lamina. Our current aim is to determine whether this alteration is an early event that precedes vessel narrowing, or if elastic fiber reorganization in SHR arteries occurs because of the remodeling process itself. Using MRA from 10-day-old, 30-day-old, and 6-mo-old SHR and normotensive Wistar Kyoto rats, we investigated the time course of the development of structural and mechanical alterations (pressure myography), elastic fiber organization (confocal microscopy), and amount of elastin (radioimmunoassay for desmosine) and collagen (picrosirius red). SHR MRA had an impairment of fenestrae enlargement during the first month of life. In 30-day-old SHR, smaller fenestrae and more packed elastic fibers in the internal elastic lamina were paralleled by increased wall stiffness. Collagen and elastin levels were unaltered at this age. MRA from 6-mo-old SHR also had smaller fenestrae and a denser network of adventitial elastic fibers, accompanied by increased collagen content and vessel narrowing. At this age, elastase digestion was less effective in SHR MRA, suggesting a lower susceptibility of elastic fibers to enzymatic degradation. These data suggest that abnormal elastic fiber deposition in SHR increases resistance artery stiffness at an early age, which might participate in vessel narrowing later in life.


2000 ◽  
Vol 58 (4) ◽  
pp. 1040-1046 ◽  
Author(s):  
RENATO PAULO CHOPARD ◽  
RENÊ GERHARD

The aim of the present study was to quantify the distribution of the elastic fiber system within the wall of the anterior cerebral artery. The study is based on the works of Glynn (1940) and Stehbens (1989) concerning the incidence and origin of brain aneurysms and recent studies of the elastic fibers. The anterior cerebral artery was divided into three segments, S1, S2 and S3: S1 corresponds to the origin of the anterior cerebral artery, S2 is located at the junction of the anterior cerebral artery with the anterior communicating artery, and S3 at the junction of the rostrum and genu of the corpus callosum,which were submitted to routine histological procedures. A histomorphometrical study was undertaken using an estimation of the linear density (Ld) of the components of the fibrous elastic system which evaluates their full length in each segment. Data were analyzed using first order linear regression methods. The results show a decreasing quantity of elastic fibers in the three segments (S1>S2>S3). Study of the elastic fiber system may originate new concepts regarding the genesis of cerebral artery aneurysm.


Microscopy ◽  
2019 ◽  
Author(s):  
Kouji Inoue ◽  
Noriyuki Kuroda ◽  
Tetsuji Sato

Abstract According to our previous reports, the intraperiodontal elastic fiber system comprises oxytalan fibers, whereas all types of elastic system fibers are present in the gingiva. Much remains to be elucidated regarding the topographic development of the elastic fiber system that constitutes the walls of the digestive organs. This study aimed to examine the topographic development of the elastic fiber system in the periodontal tissue, oral cavity and digestive tract of rats at light- and electron microscopic levels. At embryonic day 20, in situ hybridization revealed the mRNA expression of tropoelastin in the putative gingival lamina propria but not in the dental follicle. At the postnatal stage, the masticatory mucous membrane of the gingiva and hard palate comprised three different types of elastic system fibers (oxytalan, elaunin and elastic fibers). Conversely, the elastic fiber system comprised elaunin and elastic fibers in other oral mucosae and the lining mucosae of digestive tract organs (the esophagus, stomach and small intestine). The findings of our study suggest that the elastic fiber system is mainly related to tissue resistance in the periodontal ligament and tissue elasticity in the oral mucosae without masticatory mucosae and the overlying mucosa of digestive tracts and both functions in the gingiva and hard palate, respectively. The appearance of elaunin fibers in the periodontium of rats aged 14 weeks suggests the expression of tropoelastin induced by mechanical stressors such as mastication. The intraperiodontal difference in the distribution of elaunin fibers suggests heterogeneity among fibroblasts constituting the periodontium.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Maria Gabriela Espinosa ◽  
Marius Catalin Staiculescu ◽  
Jungsil Kim ◽  
Eric Marin ◽  
Jessica E. Wagenseil

Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid–solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.


Sign in / Sign up

Export Citation Format

Share Document