scholarly journals Laboratory evaluation and numerical simulation of the alkali–surfactant–polymer synergistic mechanism in chemical flooding

RSC Advances ◽  
2018 ◽  
Vol 8 (47) ◽  
pp. 26476-26487 ◽  
Author(s):  
Fuzhen Chen ◽  
Jianwei Gu ◽  
Hanqiao Jiang ◽  
Xue Yao ◽  
Yuan Li

This paper aims to reveal alkali–surfactant–polymer synergistic mechanism and construct corresponding novel ASP flooding numerical simulation model.

2021 ◽  
Author(s):  
Marisely Urdaneta

Abstract This paper aims to address calibration of a coreflood Alkali Surfactant Polymer (ASP) formulation experiment through parametrization of fluid-fluid and rock-fluid interactions considering cation exchange capacity and by rock to guide an ASP pilot design. First of all, a series of chemical formulation experiments were studied in cores drilled from clastic reservoir so that displacement lab tests were run on linear and radial cores to determine the potential for oil recovery by ASP flooding and recommended the chemical formulation and flooding schemes, in terms of oil recovery. Therefore, to simulate the process, those tests performed with radial core injection were taken, because this type of test has a better representation of the fluid flow in reservoir, the fluids are injected by a perforation in the center of the core, moving in a radial direction the fluids inside the porous medium. Subsequently, displaced fluids are collected on the periphery of the core carrier and stored in graduated test tubes. The recommended test was carried out to the phase of numerical simulation and historical matching. Reservoir simulation is one of the most important tools available to predict behavior under chemical flooding conditions and to study sensitivities based on cost-effective process implementation. Then, a radial core simulation model was designed from formulation data with porosity of 42.6%, a pore volume (PV) of 344.45 ml, radius of 7.17 cm and weight of 1225.84 g. The initial oil saturation was 0.748 PV (257.58 ml), with a critical water saturation of 0.252 PV (86.78 ml). For the simulation model historical matching, adjustments were made until an acceptable comparison was obtained with laboratory test production data through parameterization of relative permeability curves, chemical adsorption parameters, polymer viscosity, among others; resulting in an accumulated effluents production mass 37% greater for alkali than obtained in the historical, regarding to surfactant the deviation was 8% considered acceptable and for the polymer the adjustment was very close. For the injector well bottom pressure, the viscosity ratio of the mixture was considered based on the polymer concentration and the effect of the shear rate on the viscosity of the polymer as well as the effect of salinity in the alkali case. Finally, a calibrated coreflood numerical simulation model was obtained for ASP flooding to design an ASP Pilot with a residual oil saturation of 0.09 PV (31 ml) meaning 64% more recovered oil compared to a waterflooding case.


2014 ◽  
Vol 134 (7) ◽  
pp. 604-613 ◽  
Author(s):  
Toshiya Ohtaka ◽  
Tomo Tadokoro ◽  
Masashi Kotari ◽  
Tadashi Amakawa

1997 ◽  
Vol 36 (8-9) ◽  
pp. 397-402
Author(s):  
Yasuhiko Wada ◽  
Hiroyuki Miura ◽  
Rituo Tada ◽  
Yasuo Kodaka

We examined the possibility of improved runoff control in a porous asphalt pavement by installing beneath it an infiltration pipe with a numerical simulation model that can simulate rainfall infiltration and runoff at the porous asphalt pavement. From the results of simulations about runoff and infiltration at the porous asphalt pavement, it became clear that putting a pipe under the porous asphalt pavement had considerable effect, especially during the latter part of the rainfall.


2020 ◽  
pp. 014459872098361
Author(s):  
Zhongbao Wu ◽  
Qingjun Du ◽  
Bei Wei ◽  
Jian Hou

Foam flooding is an effective method for enhancing oil recovery in high water-cut reservoirs and unconventional reservoirs. It is a dynamic process that includes foam generation and coalescence when foam flows through porous media. In this study, a foam flooding simulation model was established based on the population balance model. The stabilizing effect of the polymer and the coalescence characteristics when foam encounters oil were considered. The numerical simulation model was fitted and verified through a one-dimensional displacement experiment. The pressure difference across the sand pack in single foam flooding and polymer-enhanced foam flooding both agree well with the simulation results. Based on the numerical simulation, the foam distribution characteristics in different cases were studied. The results show that there are three zones during foam flooding: the foam growth zone, stable zone, and decay zone. These characteristics are mainly influenced by the adsorption of surfactant, the gas–liquid ratio, the injection rate, and the injection scheme. The oil recovery of polymer-enhanced foam flooding is estimated to be 5.85% more than that of single foam flooding. Moreover, the growth zone and decay zone in three dimensions are considerably wider than in the one-dimensional model. In addition, the slug volume influences the oil recovery the most in the foam enhanced foam flooding, followed by the oil viscosity and gas-liquid ratio. The established model can describe the dynamic change process of foam, and can thus track the foam distribution underground and aid in optimization of the injection strategies during foam flooding.


2005 ◽  
Vol 45 (4) ◽  
pp. 500-505 ◽  
Author(s):  
Junya KANO ◽  
Eiki KASAI ◽  
Fumio SAITO ◽  
Takazo KAWAGUCHI

1995 ◽  
Vol 66 (8) ◽  
pp. 341-348 ◽  
Author(s):  
Champion Chigwedu ◽  
Jens Kempken ◽  
Andreas Ploch ◽  
Wolfgang Pluschkell

Sign in / Sign up

Export Citation Format

Share Document