scholarly journals One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging

RSC Advances ◽  
2018 ◽  
Vol 8 (48) ◽  
pp. 27429-27437 ◽  
Author(s):  
Lidija Mancic ◽  
Aleksandra Djukic-Vukovic ◽  
Ivana Dinic ◽  
Marko G. Nikolic ◽  
Mihailo D. Rabasovic ◽  
...  

The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery.

2013 ◽  
Vol 19 (8) ◽  
pp. 2685-2694 ◽  
Author(s):  
Dongmei Yang ◽  
Yunlu Dai ◽  
Pingan Ma ◽  
Xiaojiao Kang ◽  
Ziyong Cheng ◽  
...  

2018 ◽  
Vol 5 (3) ◽  
pp. 171614 ◽  
Author(s):  
M. Vijaya Bharathi ◽  
Santanu Maiti ◽  
Bidisha Sarkar ◽  
Kaustab Ghosh ◽  
Priyankar Paira

This study addresses the cellular uptake of nanomaterials in the field of bio-applications. In the present study, we have synthesized water-soluble lead sulfide quantum dot (PbS QD) with glutathione and 3-MPA (mercaptopropionic acid) as the stabilizing ligand using a green approach. 3-MPA-capped QDs were further modified with streptavidin and then bound to biotin because of its high conjugation efficiency. Labelling and bio-imaging of cells with these bio-conjugated QDs were evaluated. The bright red fluorescence from these types of QDs in HeLa cells makes these materials suitable for deep tissue imaging.


2021 ◽  
Author(s):  
Suhayla Alnajjar ◽  
Ingo Nolte ◽  
Annegret Becker ◽  
Tina Kostka ◽  
Jan Torben Schille ◽  
...  

Abstract Background: Claudin (CLDN) proteins have been described to be found and accordingly targeted to evaluate novel therapeutic approaches. C-terminus of Clostridium perfringens enterotoxin (C-CPE) binds efficiently several claudins and thus recombinant C-CPE conjugated to gold nanoparticles (AuNPs) has been used for cancer cell targeting using gold nanoparticle- mediated laser perforation (GNOME-LP). Cancer cells inoculation is routinely used to generate in vivo models to evaluate novel therapeutic approaches in prostate cancer. However, detailed characterization of cancer spreading and early tumor development and therapeutic response is often limited as conventional cell lines do not allow advanced deep tissue imaging.Methods: two canine prostate cancer cell lines were stably transfected with red fluorescent protein (RFP), followed by G418 selection. RFP marker as well as CLDN3, -4 and -7 expression was comparatively confirmed by flow cytometry, qPCR and immunofluorescences. For cancer cells targeting, GNOME-LP at a laser fluence of 72 mJ/cm² and a scanning speed of 0.5 cm/s was used. Statistical analysis was performed using SAS software 7.1, Dunnett´s Multiple Comparison Test and Student´s two-sided t-test. Differences were considered statistically significant for p<0.05.Results: we established two canine prostate carcinoma cell lines, stably expressing RFP allowing perspective deep tissue imaging. Directed C-CPE-AuNP binding to native and RFP transfected cells verified the capability to specifically target CLDN receptors. Cancer cell ablation was demonstrated in vitro setting using a combination of gold nanoparticle mediated laser perforation and C-CPE-AuNPs treatment reducing tumor cell viability to less than 10 % depending on cell line. Conclusion: the results confirm that this therapeutic approach can be used efficiently to target prostate carcinoma cells carrying a marker protein allowing deep tissue imaging. The established cell lines and the verified proof of concept in vitro study provide the basis for perspective Xenograft model in vivo studies. The introduce red fluorescence enables deep tissue imaging in living animals and therefore detailed characterization of tumor growth and subsequently possible tumor ablation through C-CPE-AuNPs treatment.


2021 ◽  
Vol 173 ◽  
pp. 141-163
Author(s):  
Fei Ding ◽  
Jing Feng ◽  
Xueli Zhang ◽  
Jielin Sun ◽  
Chunhai Fan ◽  
...  

2012 ◽  
Vol 100 (13) ◽  
pp. 131102 ◽  
Author(s):  
Huiliang Zhang ◽  
Mahmood Sabooni ◽  
Lars Rippe ◽  
Chulhong Kim ◽  
Stefan Kröll ◽  
...  

2011 ◽  
Vol 300 (2) ◽  
pp. F291-F300 ◽  
Author(s):  
R. Lance Miller

Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interactions using multiple fluorescent proteins in the same mouse, and the cell cycle in real time and in the whole animal, and they can be used to perform deep tissue imaging in the whole animal, follow cell lineage during development and disease, and isolate large quantities of a pure cell type directly from organs. These novel transgenic mice and their applications provide the means for studying of molecular and biochemical events in the whole animal that was previously limited to cell cultures. In conclusion, transgenic mice are not just for generating knockouts.


2016 ◽  
Vol 22 (31) ◽  
pp. 10801-10807 ◽  
Author(s):  
Liangliang Liang ◽  
Xiaoji Xie ◽  
Daniel Teh Boon Loong ◽  
Angelo Homayoun All ◽  
Ling Huang ◽  
...  

2018 ◽  
Vol 9 (10) ◽  
pp. 5011 ◽  
Author(s):  
Jiafu Wang ◽  
Hua Li ◽  
Geng Tian ◽  
Yong Deng ◽  
Qian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document