scholarly journals Enhanced dielectric properties of colossal permittivity co-doped TiO2/polymer composite films

RSC Advances ◽  
2018 ◽  
Vol 8 (57) ◽  
pp. 32972-32978 ◽  
Author(s):  
Mei-Yan Tse ◽  
Xianhua Wei ◽  
Chi-Man Wong ◽  
Long-Biao Huang ◽  
Kwok-ho Lam ◽  
...  

Colossal permittivity (CP) materials have shown great technological potential for advanced microelectronics and high-energy-density storage applications.

2016 ◽  
Vol 18 (35) ◽  
pp. 24270-24277 ◽  
Author(s):  
Mei-Yan Tse ◽  
Xianhua Wei ◽  
Jianhua Hao

Our work shows contributions to the high-performance dielectric properties, including a CP of up to 104–105 and a low dielectric loss down to 0.03 in (Er0.5Nb0.5)xTi1−xO2 materials with secondary phases.


Ionics ◽  
2019 ◽  
Vol 25 (9) ◽  
pp. 4351-4360 ◽  
Author(s):  
Zhongliang Yu ◽  
Jiahe Zhang ◽  
Chunxian Xing ◽  
Lei Hu ◽  
Lili Wang ◽  
...  

2020 ◽  
Vol 13 (06) ◽  
pp. 2051042
Author(s):  
Zhong Yang ◽  
Jing Wang ◽  
Long He ◽  
Chaoyong Deng ◽  
Kongjun Zhu

Flexible dielectric capacitors are becoming shining stars in modern electronic devices. Ceramic particles with large dielectric constants and benign compatibility are attractive candidates to enhance the energy storage density of pristine polymer capacitors while guaranteeing their flexibility. In this work, double-shell structure of Al2O3 (AO) and dopamine (PDA) were successively coated on the Nd-doped BaTiO3 (NBT) particles and then introduced into the Poly(vinylidene fluoride) (PVDF) matrix. Obvious enhancement in dielectric constants was observed while the dielectric loss remained nearly constant. For the composite films with 1–4[Formula: see text]vol.% NBT@AO@PDA NPs, the maximum energy density of 9.1[Formula: see text]J/cm3 and energy efficiency of 65% was achieved at 430[Formula: see text]MV/m in the sample with 1[Formula: see text]vol.% filling ratio, which are 1.4 and 1.3 times larger than those of pristine PVDF at 450[Formula: see text]MV/m. The finite element simulation reveals the effective relief of the electric field concentration in the composite film induced by the AO and PDA layers. The greater improvement in the energy storage performance could be anticipated if the dispersity of NBT@AO@PDA NPs was further improved.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48220-48227 ◽  
Author(s):  
Subrata Sarkar ◽  
Samiran Garain ◽  
Dipankar Mandal ◽  
K. K. Chattopadhyay

A significant improvement of dielectric properties and toughness with electrical energy density up to 11 J cm−3 is observed in flexible PVDF–BiVO4 nanocomposite film. It underlines to use as flexible high energy density capacitors and piezoelectric based energy harvesters.


2006 ◽  
Vol 949 ◽  
Author(s):  
Pratyush Tewari ◽  
Eugene Furman ◽  
Michael T. Lanagan

ABSTRACTPoly(chloro-p- Xylene) or Parylene –C thin films are particularly attractive for dielectric as well as biomedical applications. In the current work the dielectric properties of Parylene-C thin films are investigated to form laminar composites with oxide thin films for high energy density pulsed power capacitors. Parylene-C thin films were synthesized by pyrolytic vapor decomposition polymerization of dichloro-di(p-Xylene) monomer. Annealing of films at 225°C has shown to enhance crystallinity of film. Conduction in Parylene-C thin films appears to be bulk-controlled with the hopping charges contributing to leakage current. The barrier height of 0.89eV and hopping distance of 2 - 2.5nm are physically plausible and similar to previously reported values in polymer literature.


Author(s):  
Junhao Jiang ◽  
Jinpeng Li ◽  
Jun Qian ◽  
Xiaoyun Liu ◽  
Peiyuan Zuo ◽  
...  

Polymer nanocomposites with high energy density have become a research hotspot in the field of dielectric materials. However, the huge compatibility contrast between nanofillers and polymers always hinders the further...


Sign in / Sign up

Export Citation Format

Share Document