scholarly journals The neutralization of heparan sulfate by heparin-binding copolymer as a potential therapeutic target

RSC Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 3020-3029 ◽  
Author(s):  
Bartlomiej Kalaska ◽  
Joanna Miklosz ◽  
Kamil Kamiński ◽  
Bogdan Musielak ◽  
Shin-Ichi Yusa ◽  
...  

The neutralization of heparan sulfate (HS) by a heparin-binding copolymer (HBC) could be a promising treating option for bacterial or viral infections or bleeding related to overproduction of HS in cancer or other diseases.

Author(s):  
Yousef M.O. Alhammad ◽  
Maithri M. Kashipathy ◽  
Anuradha Roy ◽  
Jean-Philippe Gagné ◽  
Peter McDonald ◽  
...  

ABSTRACTSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like-CoVs encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs, and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated anti-viral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV and MERS-CoV Mac1 exhibit similar structural folds and all 3 proteins bound to ADP-ribose with low μM affinities. Importantly, using ADP-ribose detecting binding reagents in both a gel-based assay and novel ELISA assays, we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate compared to the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCESARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused greater than 900 thousand deaths worldwide. With, no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode for a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic post-translational process increasingly recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose, and describe its ADP-ribose binding and hydrolysis activities in direct comparison to SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1788
Author(s):  
Irma Saulle ◽  
Micaela Garziano ◽  
Claudio Fenizia ◽  
Gioia Cappelletti ◽  
Francesca Parisi ◽  
...  

MicroRNAs are gene expression regulators associated with several human pathologies, including those generated by viral infections. Their role in SARS-CoV-2 infection and COVID-19 has been investigated and reviewed in many informative studies; however, a thorough miRNA outline in SARS-CoV-2-infected pregnant women (SIPW), at both systemic and placental levels, is missing. To fill this gap, blood and placenta biopsies collected at delivery from 15 asymptomatic SIPW were immediately analysed for: miRNA expression (n = 84) (QPCR array), antiviral/immune mRNA target expression (n = 74) (QGene) and cytokine/chemokines production (n = 27) (Multiplex ELISA). By comparing these results with those obtained from six uninfected pregnant women (UPW), we observed that, following SARS-CoV-2 infection, the transcriptomic profile of pregnant women is significantly altered in different anatomical districts, even in the absence of clinical symptoms and vertical transmission. This characteristic combination of miRNA and antiviral/immune factors seems to control both the infection and the dysfunctional immune reaction, thus representing a positive correlate of protection and a potential therapeutic target against SARS-CoV-2.


Author(s):  
Yousef M.O. Alhammad ◽  
Maithri M. Kashipathy ◽  
Anuradha Roy ◽  
Jean-Philippe Gagné ◽  
Peter McDonald ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs, and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated anti-viral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV and MERS-CoV Mac1 exhibit similar structural folds and all 3 proteins bound to ADP-ribose with low μM affinities. Importantly, using ADP-ribose detecting binding reagents in both a gel-based assay and novel ELISA assays, we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate compared to the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity. IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused greater than 1.2 million deaths worldwide. With, no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode for a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic post-translational process increasingly recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose, and describe its ADP-ribose binding and hydrolysis activities in direct comparison to SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2402
Author(s):  
Dong Hoon Shin ◽  
Jeong Yeon Jo ◽  
Sun Ha Kim ◽  
Minyoung Choi ◽  
Chungyong Han ◽  
...  

Hypoxia-inducible factors (HIFs) induced by reduced O2 availability activate the transcription of target genes encoding proteins that play important roles in communication between cancer and stromal cells. Cancer cells were incubated under hypoxic conditions: H1299, A549 (NSCLC); Hep3B, HepG2 (HCC); HCT116, CT26 (Colon cancer); MCF-7, MDAMB231 (Breast cancer); MKN1, MKN5 (Gastric cancer); U87MG, SHSY5Y (Brain cancer); and SKOV3, SNU840 (Ovary cancer). All cells expressed HIF-1α and HIF-2α mRNA and proteins. However, cell proliferation of NSCLC, breast, gastric, and brain cancer cells under hypoxia was more dependent on HIF-1α except for HCC cells where it was more dependent on HIF-2α. Among HIF-1α dependent cells H1299 was the most affected in terms of cell proliferation by HIF-1α knockdown. To examine which cytokines are secreted in NSCLC cells by HIF-1α to communicate with stromal cells, we performed a cytokine-profiling array with H1299. We screened the top 14 cytokines which were dependent on the HIF-1α expression pattern. Among them, midkine (MDK) expression was affected the most in response to HIF-1α. MDK is a heparin-binding growth factor that promotes angiogenesis and carcinogenesis. Indeed, MDK significantly increased HUVEV endothelial cell migration and neo- vascularization in chick chorioallantoic membrane assay (CAM) assay via paracrine signaling. In addition, MDK secreted from NSCLC cells interacted with Notch2 which activated the Notch signaling pathway and induced EMT, upregulated NF-κB, and increased cancer promotion. However, in response to MDK knock down, siRNA or the MDK inhibitor, iMDK treatment not only decreased MDK-induced migration and angiogenesis of endothelial cells but also abrogated the progression and metastasis of NSCLC cells in in vitro and in vivo orthotopic and spontaneous lung metastasis models. Consequently, iMDK treatment significantly increased mice survival rates compared with the control or MDK expression group. MDK plays a very important role in the progression and metastasis of NSCLC cells. Moreover, the MDK targeting strategy provides a potential therapeutic target for the treatment of MDK-expressing lung cancers.


Sign in / Sign up

Export Citation Format

Share Document