scholarly journals Analysis of energies of halogen and hydrogen bonding interactions in the solid state structures of vanadyl Schiff base complexes

RSC Advances ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 4789-4796 ◽  
Author(s):  
Snehasish Thakur ◽  
Michael G. B. Drew ◽  
Antonio Franconetti ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

Four vanadyl Schiff base complexes have been prepared and characterized. Energies of supramolecular interactions in complexes 1, 2 and 3 were estimated using DFT calculations, and further corroborated with NCI plot index computational tool.

CrystEngComm ◽  
2018 ◽  
Vol 20 (45) ◽  
pp. 7281-7292 ◽  
Author(s):  
Kousik Ghosh ◽  
Klaus Harms ◽  
Antonio Bauzá ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

Supramolecular interactions in the solid state structures of a mixed valence cobalt(ii/iii) complex and a cobalt(iii) complex have been studied using DFT calculations.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3370 ◽  
Author(s):  
Tiddo J. Mooibroek

A systematic evaluation of the CSD and the PDB in conjunction with DFT calculations reveal that non-covalent Carbon-bonding interactions with X–CH3 can be weakly directional in the solid state (P ≤ 1.5) when X = N or O. This is comparable to very weak CH hydrogen bonding interactions and is in line with the weak interaction energies calculated (≤ –1.5 kcal·mol−1) of typical charge neutral adducts such as [Me3N-CH3···OH2] (2a). The interaction energy is enhanced to ≤–5 kcal·mol−1 when X is more electron withdrawing such as in [O2N-CH3··O=Cdme] (20b) and to ≤18 kcal·mol−1 in cationic species like [Me3O+-CH3···OH2]+ (8a).


CrystEngComm ◽  
2020 ◽  
Vol 22 (35) ◽  
pp. 5731-5742 ◽  
Author(s):  
Tanmoy Basak ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

The nature and characteristics of the C–H⋯π interactions that play an important role in crystal packing of two iron(iii) complexes have been discussed. The DFT calculations have been conducted to determine the interaction energies in these complexes.


2014 ◽  
Vol 10 (8) ◽  
pp. 3068-3079
Author(s):  
Ahmed Toumi ◽  
Mohamed Rzaigui ◽  
Hichem Ben Jannet

Three novel Copper complexes, [Cu(L1)2][CuCl2] (1),  [Cu(L2)Cl] (2) and [Cu2(L3)3Cl2] (3), have been prepared by reaction of CuCl with the Schiff-base ligands L1: N,N’-bis(thiophen-2-ylmethylene)-ethane-1,2-diamine, L2: N,N’-bis(1H-pyrrol-2-ylmethylene)ethane-1,2-diamine and L3: N,N’-bis(2-nitrobenzylidene)-ethane-1,2-diamine in acetonitrile. The solid-state structures of these complexes were determined by X-ray diffraction from single crystal data and characterized by 1H and 13C NMR, IR and UV/Vis spectroscopies. This study shows that (1) is an ionic complex with a Cu(I)-centered cation and an isolated linear dichlorocuprate(I) anion, (3) is a dinuclear neutral complex of Cu(I) while (2)  is a mononuclear neutral complex of Cu(II). In the three complexes, Cu is tetracordinated in different geometrical environments. The atomic arrangements and spectroscopic properties of the three complexes are reported. Complexes 1-3 exhibit, in the solid state at room temperature, photoluminescence between 320 and 550 nm.


2013 ◽  
Vol 12 (2) ◽  
pp. 8-20
Author(s):  
Biny Sasi ◽  
Swathy S ◽  
Thampidas V S ◽  
Pike D Robert

Two new manganese(III) Schiff base complexes,  [Mn(salen)(m-NO2-C6H4CO2)(H2O)] (1) and  [Mn(msalen) (p-OH-C6H4CO2)(H2O)] (2), where H2salen = N,N'-bis(salicylidene)-1,2-diaminoethane, H2msalen = N,N'-bis (3-methoxysalicylidene)-1,2-diaminoethane were synthesized from the manganese (II) carboxylates.  Single crystal X-ray diffraction studies show that the Jahn-Teller distorted octahedral complexes are stabilized by              H-bonded chains and networks in the solid state.  


2004 ◽  
Vol 59 (10) ◽  
pp. 1121-1131 ◽  
Author(s):  
Christian B. Fischer ◽  
Kurt Polborn ◽  
Harald Steininger ◽  
Hendrik Zipse

AbstractA series of 3-cyano-pyridones carrying a variety of alkyl substituents at C-5 and C-6 has been synthesized and their solid-state structures have been studied. Hydrogen bonding interactions between individual pyridone molecules lead either to the formation of symmetric dimers of the R22 (8) type or to helical chains of the C(4) type. Based on known and calculated structures for the 2-pyridone parent system, the solid-state structures can be divided in two groups representing cases with little external influence on the hydrogen bonding array (group A) and those with a larger external influence (group B).


1997 ◽  
Vol 50 (5) ◽  
pp. 439 ◽  
Author(s):  
Darren G. Hamilton ◽  
Daniel E. Lynch ◽  
Karl A. Byriel ◽  
Colin H. L. Kennard

Pyromellitic diimide forms orange-coloured cocrystals of 1 : 1 stoichiometry with dialkoxynaphthalene derivatives. The solid-state structures of two examples are presented. The cocrystal formed with 2,6-dimethoxynaphthalene presents vertical stacks of alternating π-rich and π-deficient subunits with the long axes of the respective components approximately parallel. Investigation of the packing in the cocrystal also reveals a stabilizing array of hydrogen bonds between the components of adjacent stacks. Cocrystallization with 1,5-[2-(2-hydroxyethoxy)ethoxy]naphthalene, a derivative bearing hydroxy terminated ethyleneoxy chains, gives rise to an altered structural arrangement. Alternating donor- acceptor stacks once again dominate the structure but adopt a geometry where the long axes of the constituents are essentially perpendicular. Hydrogen-bonding interactions result in the formation of continuous non-covalently linked columns of donor and acceptor subunits by linking the terminal hydroxy functions of the naphthalene component to the imide protons. The structural preferences revealed by these solid-state analyses indicate that these complexes are useful prototypes of more complex neutral supramolecular assemblies.


CrystEngComm ◽  
2015 ◽  
Vol 17 (30) ◽  
pp. 5664-5671 ◽  
Author(s):  
Prasanta Kumar Bhaumik ◽  
Antonio Bauzá ◽  
Michael G. B. Drew ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

Three copper(ii) Schiff base complexes have been synthesized and characterized. Supramolecular assemblies in the solid state are analyzed by DFT calculations.


2021 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Peng-Yu Xu ◽  
Yu-Ting Wang ◽  
Zong-Mei Yu ◽  
Yong-Hua Li ◽  
Shi Wang

This paper reports the syntheses, crystal structures and magnetic properties of Mn(III) hexadentate Schiff base complexes [Mn(4-OH-sal-N-1,5,8,12)]NO3(1) and [Mn(4-OH-sal-N-1,5,8,12)]ClO4(2), where (4-OH-sal-N-1,5,8,12)2− (4,4′-((1E,13E)-2,6,9,13-tetraazatetradeca-1,13-diene-1,14-diyl)bis(3-methoxyphenol) is a new hydroxyl-substituted hexadentate Schiff base ligand. The introduction of the (4-OH-sal-N-1,5,8,12)2− ligand induces more hydrogen bonding interactions, in addition to promoting the formation of intermolecular interactions among the cations. However, the close-packing structures of both complexes lead to their stabilization in the high-spin state in the temperature range of 2−300 K.


Sign in / Sign up

Export Citation Format

Share Document