A flexible rechargeable zinc-ion wire-shaped battery with shape memory function

2018 ◽  
Vol 6 (18) ◽  
pp. 8549-8557 ◽  
Author(s):  
Zifeng Wang ◽  
Zhaoheng Ruan ◽  
Zhuoxin Liu ◽  
Yukun Wang ◽  
Zijie Tang ◽  
...  

A flexible wire-shaped rechargeable Zn-ion battery with shape memory function was fabricated, delivering decent performances and good recoverability to mechanical deformation.

2021 ◽  
Vol 146 ◽  
pp. 110255
Author(s):  
Ryoji Kudo ◽  
Tadashi Tsukamoto ◽  
Shiduko Nakajo ◽  
Atsuhiro Fujimori ◽  
Yoshiyuki Oishi ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 267 ◽  
Author(s):  
Algirdas Lazauskas ◽  
Viktoras Grigaliūnas ◽  
Dalius Jucius

In this work, surface microstructurization was coupled with shape-memory polymer to generate reversibly tunable surface properties. A photopolymerizable thiol-ene composition comprising a mixture of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT) and 2,2-dimethoxy-2-phenylacetophenone (DMPA) was used to prepare microstructured thiol-ene shape-memory film via casting and UV polymerization on the electron beam lithography fabricated arrays of 1 µm and 2 µm square pits. The mechanical deformation via compression and recovery of the surface microstructure were investigated. Results show that, after heat treatment of the deformed thiol-ene film, the recovery yields for microstructures were not worse than 90% ± 2% and 93% ± 2% for structures imprinted with 1 µm and 2 µm square pit micro imprint stamps. Additionally, heat treatment of deformed thiol-ene film resulted in the recovery of intense diffraction colors and laser diffraction patterns. This study opens up an avenue of incorporating microstructured shape-memory films for new products, e.g., optical security devices, superhydrophobic coatings, medical diagnostics and biosensors.


2013 ◽  
Vol 446-447 ◽  
pp. 230-234
Author(s):  
Tao Li ◽  
She Liang Wang ◽  
Tao Yang ◽  
Guang Yuan Weng

With shape memory function of new smart material, the magnetic control properties of magnetic shape memory alloy could be used to fabricate intelligent actuators for vibration control of structures. In order to study its magnetic properties, this text selected Ni53Mn25Ga22 as the material for the research and development of actuator drive, And two MSMA test specimens were prepared for the experimental study under the coupled action of the temperature, preload pressure and magnetic field. The results showed that the strain of MSMA induced by magnetic field decreased with the increase of the preload pressure at constant magnetic field. The deformation performance was best when the magnetic induction intensity was about 0.5T. And the constitutive relations were fitted for the actuator production to lay the foundation for later.


Author(s):  
Pavel M. Chaplya ◽  
Geoffrey P. McKnight ◽  
Gregory P. Carman

This article describes remarkable similarities in the nonlinear mechanical response of different active/smart materials despite fundamental differences in the underlying mechanisms associated with each material. Active/smart materials (i.e., piezoelectric (PZT-5H), magnetostrictive (Terfenol-D), and shape memory alloys (NiTi)) exhibit strong non-linear mechanical behavior produced by changing non-mechanical internal states such as polarization, magnetization, and phase/twin configuration. In active/smart materials the initial deformation proceeds linearly followed by a jump in strain associated with the transformation of an internal non-mechanical state. After the transformation, the mechanical response returns to linear elastic. Upon unloading, a residual strain is observed which can be recovered with the application of a corresponding external field (i.e., electric, magnetic, or thermal). Due to coupling between applied fields and non-mechanical internal states, mechanical deformation is also a function of applied external fields. At a critical applied field, the residual strain is eliminated, providing repeatable cyclic characteristics that can be used in passive damping applications. Even though different intrinsic processes (i.e., polarization, magnetization, and phase/twin variant composition) govern the deformation of each material, their macroscopic behavior is explained using a unified volume fraction concept. That is, the deformation of piezoelectric material is described in terms of the volume fraction of ferroelectric domains with polarization parallel or orthogonal to the applied load; the deformation of magnetostrictive materials is described in terms of the volume fraction of magnetic domains with magnetization parallel or orthogonal to the applied load; and the deformation of shape memory material is described in terms of the volume fraction of twin variants that are oriented favorably to the applied load. Although the qualitative behavior of each material is similar, the average magnitude of stress required to induce non-linearity varies from ~10 MPa for Terfenol-D to ~65 MPa for PZT-5H to ~300 MPa for NiTi shape memory alloy. It is hypothesized that a composite material made of these materials connected in series would exhibit passive damping over a wide range of applied stress.


2011 ◽  
Vol 33 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Yanjiao Han ◽  
Tao Bai ◽  
Yuan Liu ◽  
Xinyun Zhai ◽  
Wenguang Liu

RSC Advances ◽  
2014 ◽  
Vol 4 (61) ◽  
pp. 32276-32282 ◽  
Author(s):  
Lin Wang ◽  
Wenxi Wang ◽  
Shubin Di ◽  
Xifeng Yang ◽  
Hongmei Chen ◽  
...  

An Ag-coordination polymer network displays a shape memory function and simultaneously allows Ag ions to be released to exert an antibacterial activity.


2008 ◽  
Vol 1129 ◽  
Author(s):  
I. Sedat Gunes ◽  
Guillermo A Jimenez ◽  
Sadhan C Jana

AbstractThe dependence of electrical resistivity on specimen temperature and imposed tensile strains was determined for shape memory polyurethane (SMPU) composites of carbon nanofiber (CNF), oxidized carbon nanofiber (ox-CNF), and carbon black (CB). The SMPU composites with crystalline soft segments were synthesized from diphenylmethane diisocyanate, 1,4-butanediol, and poly(caprolactone)diol in a low-shear chaotic mixer and in an internal mixer. The materials synthesized in the chaotic mixer showed higher soft segment crystallinity and lower electrical percolation thresholds. The soft segment crystallinity reduced in the presence of CNF and ox-CNF; although the reduction was lower in the case of ox-CNF. The composites of CB showed pronounced positive temperature coefficient (PTC) effects which in turn showed a close relationship with non-linear thermal expansion behavior. The composites of CNF and ox-CNF did not exhibit PTC effects due to low levels of soft segment crystallinity. The resistivity of composites of CNF and ox-CNF showed weak dependence on strain, while that of composites of CB increased by several orders of magnitude with imposed tensile strain. A corollary of this study was that a high level of crystallinity may cause a PTC effect and prevent any actuation through resistive heating. However, a carefully tailored compound which has reduced crystallinity and which requires minimum amount of filler may prevent PTC phenomenon and could supply necessary electrical conductivity over the operating temperature range, while offering enough soft segment crystallinity and rubberlike properties for excellent shape memory function.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Wei Wang ◽  
Wenxin Zeng ◽  
Sameer Sonkusale

Economical sensing and recording of temperatures are important for monitoring the supply chain. Existing approaches measure the entire temperature profile over time using electronic devices running on a battery. This paper presents a simple, intelligent, battery-free solution for capturing key temperature events using the natural thermo-mechanical state of a Shape Memory Alloy (SMA). This approach utilizes the temperature-induced irreversible mechanical deformation of the SMA as a natural way to capture the temperature history without the need for electronic data logging. In this article, two-way SMA is used to record both high-temperature and low-temperature peak events. Precise thermo-mechanically trained SMA are employed as arms of the dipole antenna for Radio Frequency (RF) readout. The fabricated antenna sensor works at 1 GHz and achieves a sensitivity of 0.24 dB/°C and −0.16 dB/°C for recording temperature maxima and minima, respectively.


Sign in / Sign up

Export Citation Format

Share Document