Electron-rich graphite-like electrode: stability vs. voltage for Al batteries

2018 ◽  
Vol 6 (23) ◽  
pp. 10776-10786 ◽  
Author(s):  
Preeti Bhauriyal ◽  
Priyanka Garg ◽  
Mahendra Patel ◽  
Biswarup Pathak

The development of efficient Al batteries is hindered by the major challenge of finding advanced electrode materials, which can deliver higher voltage and storage capacities with ultra-fast charge/discharge rates.

Author(s):  
Chunli Liu ◽  
Yang Bai ◽  
Ji Wang ◽  
Ziming Qiu ◽  
Huan Pang

Two-dimensional (2D) materials with structures having diverse features are promising for application in energy conversion and storage. A stronger layered orientation can guarantee fast charge transfer along the 2D planes...


2015 ◽  
Vol 3 (7) ◽  
pp. 3659-3666 ◽  
Author(s):  
Gang Wang ◽  
Jun Peng ◽  
Lili Zhang ◽  
Jun Zhang ◽  
Bin Dai ◽  
...  

Nanostructured electrode materials have been extensively studied with the aim of enhancing lithium ion and electron transport and lowering the stress caused by their volume changes during the charge–discharge processes of electrodes in lithium-ion batteries.


2013 ◽  
Vol 1 (30) ◽  
pp. 8672 ◽  
Author(s):  
Somaye Saadat ◽  
Jixin Zhu ◽  
Dao Hao Sim ◽  
Huey Hoon Hng ◽  
Rachid Yazami ◽  
...  

2018 ◽  
Vol 57 (15) ◽  
pp. 3916-3921 ◽  
Author(s):  
Haoqing Jiang ◽  
Xiao-Chen Liu ◽  
Yushan Wu ◽  
Yufei Shu ◽  
Xuan Gong ◽  
...  

2018 ◽  
Vol 130 (15) ◽  
pp. 3980-3985 ◽  
Author(s):  
Haoqing Jiang ◽  
Xiao-Chen Liu ◽  
Yushan Wu ◽  
Yufei Shu ◽  
Xuan Gong ◽  
...  

Author(s):  
Xiang Zhang ◽  
Kongzhao Su ◽  
Aya Mohamed ◽  
Caiping Liu ◽  
Qing-Fu Sun ◽  
...  

Photo-assisted Li-organic batteries provide an attractive approach for solar energy conversion and storage, while the challenge lies in the design of high-efficiency organic cathodes. Herein, a charge-separated and redox-active C60@porous...


2021 ◽  
Author(s):  
C. Sambathkumar ◽  
R. Ranjithkumar ◽  
S. Ezhil Arasi ◽  
A. Manikandan ◽  
N. Nallamuthu ◽  
...  

Abstract High-performance energy storage electrode materials are emerging demand in near future for the construction of supercapacitor with high energy and power densities. Herein, Nickel (II) Diethyldithiocarbamate was used as single source precursor for Nickel Sulfide (Ni9S8) two dimensional (2D) nanosheets preparation and hexadecylamine as shape directing agent via simple solvothermal method. The orthorhombic structure of Ni9S8 nanosheets was confirmed by X-ray diffraction (XRD) pattern. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) images revealed that as-prepared Ni9S8 nanoparticles possess sheet-like morphology. Besides, the thermal stability of Ni(DTC)2 complex was studied by Thermo-gravimetric/Derivative thermo gravimetric(TG/DTG) with Differential scanning calorimetric (DSC) analysis. The electrochemical properties of Ni9S8 nanosheets was studied using galvanostatic charge-discharge (GCD) and cyclic voltammetry (CV) techniques. From the charge-discharge study of Ni9S8 nanosheets, a high specific capacitance of 281 Fg− 1 was obtained at a current density of 1 Ag− 1, and up to 82 % retentivity was achieved after 5000 cycles. Thus, the prepared Ni9S8 nanosheets could be one of the attractive potential active electrode materials for the application of supercapacitor.


Supercapacitors are considered promising energy storage systems due to their high power density, fast charge-discharge, long service lifetime, wide operating temperature range and excellent capacitance retention. The electrochemical performance of the supercapacitors depends upon numerous factors such as nature of electrode materials, type of electrolyte and separator thickness, etc. Among these factors, electrolyte used in supercapacitor plays an important role in deciding final characteristics of supercapacitors. In recent decades, tremendous research work has been on the development of novel electrolytes and electrode/electrolyte configurations. In this chapter, we aimed to focus on the role of inorganic electrolytes used in supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document