Investigations and improvement of Nickel Sulfide modified electrode material from single source precursor for energy storage application

Author(s):  
C. Sambathkumar ◽  
R. Ranjithkumar ◽  
S. Ezhil Arasi ◽  
A. Manikandan ◽  
N. Nallamuthu ◽  
...  

Abstract High-performance energy storage electrode materials are emerging demand in near future for the construction of supercapacitor with high energy and power densities. Herein, Nickel (II) Diethyldithiocarbamate was used as single source precursor for Nickel Sulfide (Ni9S8) two dimensional (2D) nanosheets preparation and hexadecylamine as shape directing agent via simple solvothermal method. The orthorhombic structure of Ni9S8 nanosheets was confirmed by X-ray diffraction (XRD) pattern. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) images revealed that as-prepared Ni9S8 nanoparticles possess sheet-like morphology. Besides, the thermal stability of Ni(DTC)2 complex was studied by Thermo-gravimetric/Derivative thermo gravimetric(TG/DTG) with Differential scanning calorimetric (DSC) analysis. The electrochemical properties of Ni9S8 nanosheets was studied using galvanostatic charge-discharge (GCD) and cyclic voltammetry (CV) techniques. From the charge-discharge study of Ni9S8 nanosheets, a high specific capacitance of 281 Fg− 1 was obtained at a current density of 1 Ag− 1, and up to 82 % retentivity was achieved after 5000 cycles. Thus, the prepared Ni9S8 nanosheets could be one of the attractive potential active electrode materials for the application of supercapacitor.

2015 ◽  
Vol 3 (30) ◽  
pp. 15650-15660 ◽  
Author(s):  
Jagruti S. Suroshe ◽  
Shivram S. Garje

Synthesis, characterization of functionalized carbon nanotube/ZnO composites by solvothermal decomposition of a single source precursor and their use as electrode materials for supercapacitors with good reversible charge/discharge ability and cycle stability.


2011 ◽  
Vol 383-390 ◽  
pp. 3828-3834 ◽  
Author(s):  
Ajay V. Gole ◽  
Shivram S. Garje

Nickel furfuraldehyde thiosemcarbabazone adduct of the type, NiCl2(L)2(L = furfuraldehyde thiosemicarbazone) was synthesized by the reaction between nickel dichloride hexahydrate and furfuraldehyde thiosemicarbazone in 1:2 stoichiometry. The resulting compound was characterised by elemental analysis, IR,1H and13C{1H} NMR spectral data. It was further used as a single-source precursor for the deposition of nickel sulfide thin films by aerosol assisted chemical vapour deposition (AACVD) technique and the nickel sulfide nanocrystallites by pyrolysis and solvothermal decomposition methods. The thin films obtained were characterised by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis by X-rays (EDAX) and atomic force microscopy (AFM). The nanocrystallites obtained were also characterized by XRD, EDAX as well as transmission electron microscopy (TEM). The SEM images of the thin films show formation of different morphologies of nickel sulfide, i.e. nanoball-like, nanowires to flower-like depending on the growth temperature. The mechanism for the variation of the morphology with the growth temperature has been proposed. The XRD of the nanocrystallites obtained matches with the hexagonal phase of nickel sulfide and the TEM images show formation of 10-50 nm spherical nano-crystals.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102504-102512 ◽  
Author(s):  
J. M. Gonçalves ◽  
R. R. Guimarães ◽  
C. V. Nunes ◽  
A. Duarte ◽  
B. B. N. S. Brandão ◽  
...  

Described herein is a composite material based on rGO and α-NiCo(OH)2 nanoparticles combining very fast charge/discharge processes with the high energy density of batteries, suitable for application in high performance energy storage devices.


2018 ◽  
Vol 386 ◽  
pp. 359-364
Author(s):  
Yury M. Nikolenko ◽  
Denis P. Opra ◽  
Alexander K. Tsvetnikov ◽  
Alexander Yu. Ustinov ◽  
Valery G. Kuryavyi ◽  
...  

The hydrolytic lignin derivatives have been prepared via its physical activation (high-temperature heating in vacuum) followed by chemical modification (fluorination). The obtained products were characterized using scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the graphitized product of thermal activation up to 1000 °C at a low rate of < 2 °C/min under high vacuum shows an enhanced specific surface area (215 m2/g), that makes its potentially useful as sorbent, catalytic substrate or electrode material. To clarify the potentialities of hydrolytic lignin derivatives for energy storage and conversion, the electrochemical system with metallic lithium anode was applied. The galvanostatic discharge of battery at a current density of 100 μA/cm2between 3.0 and 0.5 V shows that the specific capacity of thermally activated derivative is equal to 845 mA·h/g, while the untreated lignin yields only 190 mA·h/g. The improve of the electrochemical performance of product originates from its graphitization, increasing electronic conductivity, and, possibly, enhanced ability to adsorb of oxygen. The fluorination of both the lignin and its thermally activated form results in higher operating voltage of battery, as seems, due to the involvement of fluorine bound to carbon in electrochemical process.


Supercapacitors are considered promising energy storage systems due to their high power density, fast charge-discharge, long service lifetime, wide operating temperature range and excellent capacitance retention. The electrochemical performance of the supercapacitors depends upon numerous factors such as nature of electrode materials, type of electrolyte and separator thickness, etc. Among these factors, electrolyte used in supercapacitor plays an important role in deciding final characteristics of supercapacitors. In recent decades, tremendous research work has been on the development of novel electrolytes and electrode/electrolyte configurations. In this chapter, we aimed to focus on the role of inorganic electrolytes used in supercapacitors.


2009 ◽  
Vol 81 (8) ◽  
pp. 1489-1498 ◽  
Author(s):  
Amreesh Chandra ◽  
Alexander J. Roberts ◽  
Eric Lam How Yee ◽  
Robert C. T. Slade

Nanostructured materials are extensively investigated for application in energy storage and power generation devices. This paper deals with the synthesis and characterization of nanomaterials based on oxides of vanadium and with their application as electrode materials for energy storage systems viz. supercapacitors. These nano-oxides have been synthesized using a hydrothermal route in the presence of templates: 1-hexadecylamine, Tweens and Brij types. Using templates during synthesis enables tailoring of the particle morphology and physical characteristics of synthesized powders. Broad X-ray diffraction peaks show the formation of nanoparticles, confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. SEM studies show that a large range of nanostructures such as needles, fibers, particles, etc. can be synthesized. These particles have varying surface areas and electrical conductivity. Enhancement of surface area as much as seven times relative to surface areas of starting parent materials has been observed. These properties make such materials ideal candidates for application as electrode materials in supercapacitors. Assembly and characterization of supercapacitors based on electrodes containing these active nano-oxides are discussed. Specific capacitance of &gt;100 F g–1 has been observed. The specific capacitance decreases with cycling: causes of this phenomenon are presented.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Sajid Ali Ansari ◽  
Nazish Parveen ◽  
Mohd Al Saleh Al-Othoum ◽  
Mohammad Omaish Ansari

The design and development of electrode materials for energy-storage applications is an area of prime focus around the globe because of the shortage of natural resources. In this study, we developed a method for preparing a novel three-dimensional binder-free pseudocapacitive NiZn2O4 active material, which was grown directly over nickel foam (NiZn2O4@3D-NF), using a simple one-step hydrothermal process. The material was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques were employed to evaluate the pseudocapacitive performance of the NiZn2O4 active material in a three-electrode assembly cell. The prepared NiZn2O4@3D-NF electrode exhibited an excellent specific capacitance, of 1706.25 F/g, compared to that of the NiO@3D-NF (1050 F/g) electrode because it has the bimetallic characteristics of both zinc and nickel. The NiZn2O4@3D-NF electrode showed better cyclic stability (87.5% retention) compared to the NiO@3D-NF electrode (80% retention) after 5000 cycles at a fixed current density, which also supports the durability of the NiZn2O4@3D-NF electrode. The characteristics of NiZn2O4@3D-NF include corrosion resistance, high conductivity, an abundance of active sites for electrochemical reaction, a high surface area, and synergism between the bimetallic oxides, which make it a suitable candidate for potential application in the field of energy storage.


Author(s):  
Tariq Bashir ◽  
Sara Adeeba Ismail ◽  
Yuheng Song ◽  
Rana Muhammad Irfan ◽  
Shiqi Yang ◽  
...  

Energy storage devices such as batteries hold great importance for society, owing to their high energy density, environmental benignity and low cost. However, critical issues related to their performance and safety still need to be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable energy storage devices.


2020 ◽  
Vol 15 (4) ◽  
pp. 498-503
Author(s):  
Jian Wang ◽  
Yan Zhao ◽  
Dong Zhang ◽  
Yucai Li ◽  
Shiwei Song ◽  
...  

Rational design and construction of hybrid capacitor electrode materials with prominent energy and power density plays an indispensable role for its potential application in energy storage devices. In this work, the nanoflower-like NiCo2O4 samples are successfully prepared on Ni foam via a facile hydrothermal method. The as-fabricated NiCo2O4 samples exhibit superior electrochemical performance with a high specific capacitance of 444.4 F g–1 at 1 A g–1 and excellent capacitance retention. In addition, the as-fabricated device presents a high energy density of 0.298 mWh cm–3 at a power density of 5.71 mW cm–3 and excellent cycle stability with the capacitance retention of 75.6% after 10000 cycles, indicating a promising application as electrodes for energy storage device.


Sign in / Sign up

Export Citation Format

Share Document