Functionalized boron nitride membranes with multipurpose and super-stable semi-permeability in solvents

2018 ◽  
Vol 6 (42) ◽  
pp. 21104-21109 ◽  
Author(s):  
Cheng Chen ◽  
Dan Liu ◽  
Jiemin Wang ◽  
Lifeng Wang ◽  
Jianhua Sun ◽  
...  

Multipurpose and super-stable molecular sieving membranes exhibit great potential for mixture separation at low energy cost within extreme chemical and thermal environments.

2008 ◽  
Author(s):  
James L. Topper ◽  
Binyamin Rubin ◽  
Cody C. Farnell ◽  
Azer P. Yalin

RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94895-94902 ◽  
Author(s):  
Cheng Ma ◽  
Yuehong Shu ◽  
Hongyu Chen

A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting method, is proposed for treating components of spent lead acid batteries with oxalate and sodium oxalate.


Author(s):  
Mariusz Jasiński ◽  
Jerzy Mizeraczyk ◽  
Zenon Zakrzewski

AbstractResults of the study of decomposition of volatile organic compounds (VOCs including Freons) in their mixtures with either synthetic air or nitrogen, and nitrogen oxides NOx in their mixtures with N2 or Ar in low (~ 100 W) and moderate-power (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of microwave torch discharge (MTD) generators, i.e. the low-power coaxial-line-based MID, the moderate-power waveguide-based coaxial-line MTD and the moderate-power waveguide-based MTD generators were used. The gas flow rate and microwave power (2.45 GHz) delivered to the discharge were in the range of 1÷3 l/min and 100÷ 400 W, respectively. Concentrations of the processed gaseous pollutants usually were from several up to several tens percent. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g/kWh. It was found that the microwave torch plasmas fully decomposed the pollutants at relatively low energy cost. This suggests that the MTD plasma can be a useful tool for decomposition of highly-concentrated gaseous pollutants.


2017 ◽  
Vol 659 ◽  
pp. 31-42 ◽  
Author(s):  
P.C. Mende ◽  
Q. Gao ◽  
A. Ismach ◽  
H. Chou ◽  
M. Widom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document