A 1.17ns FO4(1V) Low Energy Cost 4-Bit Absolute-Value Detector

Author(s):  
Jingzhan Ge ◽  
Jikai Yang ◽  
Chen Zhao
RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94895-94902 ◽  
Author(s):  
Cheng Ma ◽  
Yuehong Shu ◽  
Hongyu Chen

A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting method, is proposed for treating components of spent lead acid batteries with oxalate and sodium oxalate.


Author(s):  
Mariusz Jasiński ◽  
Jerzy Mizeraczyk ◽  
Zenon Zakrzewski

AbstractResults of the study of decomposition of volatile organic compounds (VOCs including Freons) in their mixtures with either synthetic air or nitrogen, and nitrogen oxides NOx in their mixtures with N2 or Ar in low (~ 100 W) and moderate-power (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of microwave torch discharge (MTD) generators, i.e. the low-power coaxial-line-based MID, the moderate-power waveguide-based coaxial-line MTD and the moderate-power waveguide-based MTD generators were used. The gas flow rate and microwave power (2.45 GHz) delivered to the discharge were in the range of 1÷3 l/min and 100÷ 400 W, respectively. Concentrations of the processed gaseous pollutants usually were from several up to several tens percent. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g/kWh. It was found that the microwave torch plasmas fully decomposed the pollutants at relatively low energy cost. This suggests that the MTD plasma can be a useful tool for decomposition of highly-concentrated gaseous pollutants.


2018 ◽  
Vol 6 (42) ◽  
pp. 21104-21109 ◽  
Author(s):  
Cheng Chen ◽  
Dan Liu ◽  
Jiemin Wang ◽  
Lifeng Wang ◽  
Jianhua Sun ◽  
...  

Multipurpose and super-stable molecular sieving membranes exhibit great potential for mixture separation at low energy cost within extreme chemical and thermal environments.


1985 ◽  
Vol 38 (11) ◽  
pp. 1585 ◽  
Author(s):  
NV Riggs

By optimization with the 3-21G basis set, pyrrolidin-2-one is found clearly to prefer an envelope conformation with the flap bent 27.4° out of the NC(=O)C reference plane. The ring may be bent or twisted through a few degrees at low energy-cost, and undergoes rapid inversion through a planar-ring structure lying only 3.3 kJ mol-1 above the preferred equilibrium structure.


2016 ◽  
Vol 87 (17) ◽  
pp. 2066-2075 ◽  
Author(s):  
ZH Zhang ◽  
ZQ Xu ◽  
XX Huang ◽  
XM Tao

This paper reports an investigation of dyeing processes of textiles made from a novel 100% bio-based and fully degradable polylactide/poly (hydroxybutyrate-co-hydroxyvalerate) (PLA/PHBV) fiber. The dye exhaustion, depth of shade and fastness, as well as bursting strength of dyed PLA/PHBV fabrics have been evaluated in terms of types and concentration of dyestuff, dyeing bath temperature, duration, liquor ratio and pH value. Finally, the energy cost of the whole dyeing process of the proposed material is calculated and compared with that of polyethylene terephthalate. The experimental results show that an excellent dyeing effect and bursting strength can be achieved by properly applied dyes (e.g. C.I. Disperse Orange 30, Red 74, and Blue 79) under optimal low-dyeing-temperature conditions (100℃, 10 min, pH 5, LR 30:1). In addition, considering the low energy cost during the whole process, PLA/PHBV fibers can be regarded as a promising and environment-friendly material for the textile industry.


2011 ◽  
Vol 233-235 ◽  
pp. 1708-1713
Author(s):  
Xiang Xue Zhu ◽  
Fu Cun Chen ◽  
Jie An ◽  
Peng Zeng ◽  
Long Ya Xu

This article demonstrates the design and industrial operation results of the ethylbenzene(EB) production technology from FCC dry gas by a combination of gas-phase alkylation and liquid-phase transalkylation, developed and commercialized by Dalian Institute of Chemical Physics (DICP), CAS. Based on the high active modified ZSM-5/ZSM-11 co-crystalline zeolite alkylation catalyst and modified β zeolite transalkylation catalyst, both the alkylation and transalkylation reactions are performed under much milder conditions, resulting in low energy cost and low content of xylenes impurities in the EB product. Also, the novel process for EB production, developed by DICP recently, through alkylation of dilute ethylene with gas-liquid mixed phase benzene and transalkylation feed is optimized. The results show that the transalkylation feed addition into the middle-lower part of the reactor improves the EB selectivity from about 90% to more than 99%, and the alkylation and transalkylation reactions are unified into a single reactor. Moreover, the alkylation reaction temperature decreases from more than 320 °C to about 170 °C, and the content of the xylenes impurities in the EB product is further decreased to less than 100 ppm.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mengying Xu ◽  
Jie Zhou

The growing application of body area networks (BANs) in different fields makes the low energy clustering a paramount issue. A clustering optimization algorithm in BANs is a fundamental scheme to guarantee that the essential collected data can be forwarded in a reliable path and improve the lifetime of BANs. Low energy clustering is a technique, which provides a method that shows how to reduce network communication costs in BANs. A careful low energy clustering scheme is one of the most critical means in the research of BANs, which has attracted considerable attention, comprising monitoring capability constraints. However, the classical clustering method leads to high cost when constraints such as large overall energy consumption are undertaken. Hence, a binary immune hybrid artificial bee colony algorithm (BIHABCA), a randomized swarm intelligent scheme applied in BANs, motivated by immune theory and hybrid scheme is introduced. Furthermore, we designed the formulation that considers both distances between two nodes and the length of bits. Finally, we have compared the energy cost optimized by BIHABCA with a shuffled frog leaping algorithm, ant colony optimization, and simulated annealing in the simulation with different quantity of nodes in terms of energy cost. Results show that the energy cost of the network optimized by the proposed BIHABCA method decreased compared to those by the other three methods which mean that the proposed BIHABCA finds the global optima and reduces the energy cost of transmitting and receiving data in BANs.


2021 ◽  
Vol 253 ◽  
pp. 01005
Author(s):  
Ivan Haysak ◽  
Vasyl Martishichkin ◽  
Yevgen Harapko ◽  
Robert Holomb ◽  
Karel Katovsky

The neutron generation technique was tested on the microtron M-10 with an output electron beam of 8.7 MeV. Given the low energy that the microtron can provide to electrons, the bremsstrahlung induced photonuclear reaction 9Be (γ, n), which has a low threshold, was chosen for neutron generation. Cobalt and indium targets were tested as activation detectors to estimate the neutron flux density. In the cobalt target, the isomeric state of 60mCo with an energy of 58.6 keV and a half-life of 10.5 minutes is well activated. Two well-known additional gamma lines of standard cobalt source permit to clarify the absolute value of the neutron flux. The activated indium target has four gamma lines bound to the 116mIn isomer β- decaying with the half-life of 54.4 minutes, what is convenient for measurement of gamma spectrum. Despite the low energy of the output electron beam, at a beam intensity of 5 μA it is possible to obtain an almost isotropic neutron flux of 107 n/(s∙cm2).


2003 ◽  
Vol 3 (3) ◽  
pp. 141-148 ◽  
Author(s):  
K. Parameshwaran ◽  
A.G. Fane ◽  
B.D. Cho ◽  
R. Moosbrugger ◽  
K.J. Kim

A pilot plant consisting of UASB, SBR and microfiltration in series was operated for 15 months to study a low energy treatment option for brewery effluent. The UASB was loaded up to 18 kg/kL.d. However for trouble free operation the loading had to be limited to 14 kg/kL.d. More than 80% of the feed COD was removed in the anaerobic process and a further 60% COD removal was observed in the aerobic process. An air backwashable microfiltration unit was used to remove suspended solids so that the treated water could be reused. The membrane unit was optimised by operating under dead-end, controlled flux conditions (permeate pumping) and air backwashing at set transmembrane pressure (TMP) (in practice the membranes are backwashed at set time interval). Operating energy cost calculations for the membrane system showed that the unit needs to be operated at low flux (say 20 to 30 L/m2.h) to have a low energy demand. However this necessitates a large membrane area. Optimisation for capital and energy cost indicates that the unit needs to be operated at more than 60 L/m2.h depending on the maximum TMP specified. The system energy balance was also calculated. The energy needed for the operation of all units less the energy gained from methane gas generated indicates that the system could yield a net energy of 2.5 kWh/kL water treated. The treated effluent had a turbidity of less than 1.2 NTU and the BOD5 less than 20 mg/L.


Sign in / Sign up

Export Citation Format

Share Document