scholarly journals Efficient solid-state dye sensitized solar cells fabricated on a compact Ti)2 barrier layer preventing short-circuit current

2004 ◽  
Vol 5 (0) ◽  
pp. 27 ◽  
Author(s):  
J Bandara ◽  
HC Weerasinghe
2018 ◽  
Vol 6 (45) ◽  
pp. 22508-22512 ◽  
Author(s):  
Naohiko Kato ◽  
Shinya Moribe ◽  
Masahito Shiozawa ◽  
Ryo Suzuki ◽  
Kazuo Higuchi ◽  
...  

To realize highly efficient solid-state dye-sensitized solar cells (SDSCs), the absorption range of the dye should be extended to the near-IR range to increase short-circuit current density (Jsc); a high Jsc in turn requires a highly conductive p-type semiconductor.


2021 ◽  
Vol 1016 ◽  
pp. 863-868
Author(s):  
Tika Erna Putri ◽  
Yuan Hao ◽  
Fadzai Lesley Chawarambwa ◽  
Hyunwoong Seo ◽  
Min Kyu Son ◽  
...  

The losses of solar cells are consisted of electrical losses and optical losses. Optical losses chiefly reduce the short-circuit current. Here we apply bifacial cell approach to increase light absorption and the short-circuit current of dye sensitized solar cells (DSSCs). We have employed activated carbon (AC) as a very low cost counter electrode, an alternative to Pt counter electrode. Addition of dimethyl sulfoxide (DMSO) and titanium carbonitride (TiCN) to AC increase the efficiency of bifacial DSSC at a mirror angle of from 5.10% to and , respectively. These results indicate that AC has the potential to replace Pt as a very low cost counter electrode of bifacial DSSCs. The bifacial DSSC system using double plane mirrors improve PCE to for Pt counter electrode at a mirror angle of , and for AC counter electrode at a mirror angle of , respectively.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2936
Author(s):  
Junfeng Wei ◽  
Zhipeng Shao ◽  
Bin Pan ◽  
Shuanghong Chen ◽  
Linhua Hu ◽  
...  

The tandem pn-type dye-sensitized solar cells (pn-DSCs) have received much attention in the field of photovoltaic technologies because of their great potential to overcome the Shockley-Queisser efficiency limitation that applies to single junction photovoltaic devices. However, factors governing the short-circuit current densities (Jsc) of pn-DSC remain unclear. It is typically believed that Jsc of the pn-DSC is limited to the highest one that the two independent photoelectrodes can achieve. In this paper, however, we found that the available Jsc of pn-DSC is always determined by the larger Jsc that the photoanode can achieve but not by the smaller one in the photocathode. Such experimental findings were verified by a simplified series circuit model, which shows that a breakdown will occur on the photocathode when the photocurrent goes considerably beyond its threshold voltage, thus leading to an abrupt increase in Jsc of the circuit. The simulation results also suggest that a higher photoconversion efficiency of the pn-DSCs can be only achieved when an almost equivalent photocurrent is achieved for the two photoelectrodes.


BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


2014 ◽  
Vol 32 (4) ◽  
pp. 547-554 ◽  
Author(s):  
Hatem El-Ghamri ◽  
Taher El-Agez ◽  
Sofyan Taya ◽  
Monzir Abdel-Latif ◽  
Amal Batniji

AbstractThe application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2516
Author(s):  
Minseon Kong ◽  
Kyeong Seok Kim ◽  
Nguyen Van Nga ◽  
Yeonju Lee ◽  
Yu Seong Jeon ◽  
...  

The leakage and volatilization of liquid electrolytes limit the commercialization of dye-sensitized solar cells (DSCs). As solid-state (ss) hole-transporting materials, free from leakage and volatilization, biscarbazole-based polymers with different molecular weights (PBCzA-H (21,200 g/mol) and PBCzA-L (2450 g/mol)) were applied in combination with additives to produce ssDSCs. An ssDSC with PBCzA-H showed a better short-circuit current (Jsc), open-circuit voltage (Voc), and fill factor (FF) than a device with PBCzA-L, resulting in 38% higher conversion efficiency. Compared to the PBCzA-L, the PBCzA-H with a higher molecular weight showed faster hole mobility and larger conductivity, leading to elevations in Jsc via rapid hole transport, Voc via rapid hole extraction, and FF via lowered series and elevated shunt resistances. Thus, it is believed that PBCzA-H is a useful candidate for replacing liquid electrolytes.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4181 ◽  
Author(s):  
Mariia Karpacheva ◽  
Vanessa Wyss ◽  
Catherine E. Housecroft ◽  
Edwin C. Constable

By systematic tuning of the components of the electrolyte, the performances of dye-sensitized solar cells (DSCs) with an N-heterocyclic carbene iron(II) dye have been significantly improved. The beneficial effects of an increased Li+ ion concentration in the electrolyte lead to photoconversion efficiencies (PCEs) up to 0.66% for fully masked cells (representing 11.8% relative to 100% set for N719) and an external quantum efficiency maximum (EQEmax) up to approximately 25% due to an increased short-circuit current density (JSC). A study of the effects of varying the length of the alkyl chain in 1-alkyl-3-methylimidazolium iodide ionic liquids (ILs) shows that a longer chain results in an increase in JSC with an overall efficiency up to 0.61% (10.9% relative to N719 set at 100%) on going from n-methyl to n-butyl chain, although an n-hexyl chain leads to no further gain in PCE. The results of electrochemical impedance spectroscopy (EIS) support the trends in JSC and open-circuit voltage (VOC) parameters. A change in the counterion from I− to [BF4]− for 1-propyl-3-methylimidazolium iodide ionic liquid leads to DSCs with a remarkably high JSC value for an N-heterocyclic carbene iron(II) dye of 4.90 mA cm−2, but a low VOC of 244 mV. Our investigations have shown that an increased concentration of Li+ in combination with an optimized alkyl chain length in the 1-alkyl-3-methylimidazolium iodide IL in the electrolyte leads to iron(II)-sensitized DSC performances comparable with those of containing some copper(I)-based dyes.


2017 ◽  
Vol 8 ◽  
pp. 287-295 ◽  
Author(s):  
Saif Saadaoui ◽  
Mohamed Aziz Ben Youssef ◽  
Moufida Ben Karoui ◽  
Rached Gharbi ◽  
Emanuele Smecca ◽  
...  

In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the DSSC. The ZnO layers were annealed at different temperatures under various gas sources. Indeed, the forming gas (FG) (N2/H2 95:5) was found to enhance the conductivity by a factor of 103 compared to nitrogen (N2) or oxygen (O2) annealing gas. The NR width varied between 40 and 100 nm and the length from 500 to 1000 nm, depending on the growth time. The obtained NWs had a length of 850 nm. The properties of the developed ZnO NW and NR layers with different thicknesses and their effect on the photovoltaic parameters were studied. An internal coverage of the ZnO NWs was also applied by the deposition of a thin TiO2 layer by reactive sputtering to improve the cell performance. The application of this layer increased the overall short circuit current J sc by seven times from 2.45 × 10−3 mA/cm2 to 1.70 × 10−2 mA /cm2.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Antigoni V. Katsanaki ◽  
Dimitris S. Tsoukleris ◽  
Polycarpos Falaras ◽  
Haido S. Karayianni ◽  
Marie-Claude Bernard

Transparent counter electrodes were prepared on transparent conductive glass (TCG) substrates from a hexachloroplatinic acid (H2PtCl6) solution applying the thermal decomposition method in combination with the spin-coating deposition technique. The effect of the precursor concentration and the number of deposited platinum layers on the surface characteristics of the Pt films was examined, and the relation between those surface characteristics and the electrochemical properties of the corresponding modified Pt/TCG electrodes was defined. Four types of counterelectrodes were prepared, differing in the concentration of the H2PtCl6 solution (0.03M and 0.15M) and in the number of Pt layers (one or two Pt layers); their performance as counterelectrodes was evaluated after their incorporation into dye-sensitized solar cells (DSSCs) employing a solid state redox electrolyte. The obtained results show that solar cells using counterelectrodes prepared from the 0.03MH2PtCl6 solution and consisting of two Pt layers (Pt032 electrode) exhibited the best performance characteristics (diffusion coefficient D*I3−=1.58×10−5cm2s−1, conversion efficiency η=2.16%, fill factor ff=62.14%, and short circuit photocurrent Isc=4.71mAcm−2). The electrochemical behavior of the modified counterelectrodes is consistent with the surface characteristics of the Pt film that formed on the conductive glass substrate, which seems to be significantly affected by the adopted method and the adjusted experimental parameters (Pt concentration and number of Pt layers). Specifically, this type of electrodes beside their low roughness (Rq=11.5nm), also presents a high complexity (Df=2.3). As a result, for this kind of solid state DSSCs, the less rough but the more complex the Pt/TCG electrode surface, the higher the efficiency of the corresponding solar cells.


Sign in / Sign up

Export Citation Format

Share Document