A deep learning approach to identify association of disease–gene using information of disease symptoms and protein sequences

2020 ◽  
Vol 12 (15) ◽  
pp. 2016-2026
Author(s):  
Xingyu Chen ◽  
Qixing Huang ◽  
Yang Wang ◽  
Jinlong Li ◽  
Haiyan Liu ◽  
...  

Prediction of disease–gene association based on a deep convolutional neural network.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2019 ◽  
Vol 17 (01) ◽  
pp. 1950004 ◽  
Author(s):  
Chun Fang ◽  
Yoshitaka Moriwaki ◽  
Aikui Tian ◽  
Caihong Li ◽  
Kentaro Shimizu

Molecular recognition features (MoRFs) are key functional regions of intrinsically disordered proteins (IDPs), which play important roles in the molecular interaction network of cells and are implicated in many serious human diseases. Identifying MoRFs is essential for both functional studies of IDPs and drug design. This study adopts the cutting-edge machine learning method of artificial intelligence to develop a powerful model for improving MoRFs prediction. We proposed a method, named as en_DCNNMoRF (ensemble deep convolutional neural network-based MoRF predictor). It combines the outcomes of two independent deep convolutional neural network (DCNN) classifiers that take advantage of different features. The first, DCNNMoRF1, employs position-specific scoring matrix (PSSM) and 22 types of amino acid-related factors to describe protein sequences. The second, DCNNMoRF2, employs PSSM and 13 types of amino acid indexes to describe protein sequences. For both single classifiers, DCNN with a novel two-dimensional attention mechanism was adopted, and an average strategy was added to further process the output probabilities of each DCNN model. Finally, en_DCNNMoRF combined the two models by averaging their final scores. When compared with other well-known tools applied to the same datasets, the accuracy of the novel proposed method was comparable with that of state-of-the-art methods. The related web server can be accessed freely via http://vivace.bi.a.u-tokyo.ac.jp:8008/fang/en_MoRFs.php .


2019 ◽  
Vol 34 (11) ◽  
pp. 4924-4931 ◽  
Author(s):  
Daichi Kitaguchi ◽  
Nobuyoshi Takeshita ◽  
Hiroki Matsuzaki ◽  
Hiroaki Takano ◽  
Yohei Owada ◽  
...  

2018 ◽  
Vol 132 ◽  
pp. 679-688 ◽  
Author(s):  
Sakshi Indolia ◽  
Anil Kumar Goswami ◽  
S.P. Mishra ◽  
Pooja Asopa

Sign in / Sign up

Export Citation Format

Share Document