scholarly journals Structural characterisation of amorphous solid dispersions via metropolis matrix factorisation of pair distribution function data

2019 ◽  
Vol 55 (89) ◽  
pp. 13346-13349 ◽  
Author(s):  
Harry S. Geddes ◽  
Helen Blade ◽  
James F. McCabe ◽  
Leslie P. Hughes ◽  
Andrew L. Goodwin

We use total scattering and non-negative matrix factorisation to characterise the structure of an amorphous pharmaceutical in a complex mixture.

2019 ◽  
Author(s):  
Harry Geddes ◽  
Helen Blade ◽  
James McCabe ◽  
Leslie P. Hughes ◽  
Andrew Goodwin

We measure the X-ray pair distribution functions (PDFs) of a series of felodipine:copovidone amorphous solid dispersions. Using a newly-developed Metropolis Matrix Factorisation (MMF) algorithm we extract from these data the PDF of the amorphous felodipine component in isolation. Our MMF analysis allows quantification of the degree of drug crystallinity in each sample, and structural characterisation of the amorphous drug <i>via</i>its PDF. Comparison with atomistic simulations reveals that the (in)accessibility of conformational rotamers distinguishes amorphous and crystalline felodipine, in turn suggesting design routes for stabilising the amorphous form. We discuss the conceptual importance of our results in the context of characterising not only amorphous pharmaceuticals, but complex mixtures in general.


2019 ◽  
Author(s):  
Harry Geddes ◽  
Helen Blade ◽  
James McCabe ◽  
Leslie P. Hughes ◽  
Andrew Goodwin

We measure the X-ray pair distribution functions (PDFs) of a series of felodipine:copovidone amorphous solid dispersions. Using a newly-developed Metropolis Matrix Factorisation (MMF) algorithm we extract from these data the PDF of the amorphous felodipine component in isolation. Our MMF analysis allows quantification of the degree of drug crystallinity in each sample, and structural characterisation of the amorphous drug <i>via</i>its PDF. Comparison with atomistic simulations reveals that the (in)accessibility of conformational rotamers distinguishes amorphous and crystalline felodipine, in turn suggesting design routes for stabilising the amorphous form. We discuss the conceptual importance of our results in the context of characterising not only amorphous pharmaceuticals, but complex mixtures in general.


2021 ◽  
Vol 159 ◽  
pp. 105700
Author(s):  
Sergey A. Zolotov ◽  
Natalia B. Demina ◽  
Anna S. Zolotova ◽  
Natalia V. Shevlyagina ◽  
Grigorii A. Buzanov ◽  
...  

Author(s):  
Valentyn Mohylyuk ◽  
Thomas Pauly ◽  
Oleksandr Dobrovolnyi ◽  
Nathan Scott ◽  
David S. Jones ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Eun-Sol Ha ◽  
Du Hyung Choi ◽  
In-hwan Baek ◽  
Heejun Park ◽  
Min-Soo Kim

In this study, we designed amorphous solid dispersions based on Eudragit E/HCl (neutralized Eudragit E using hydrochloric acid) to maximize the dissolution of trans-resveratrol. Solid-state characterization of amorphous solid dispersions of trans-resveratrol was performed using powder X-ray diffraction, scanning electron microscopy, and particle size measurements. In addition, an in vitro dissolution study and an in vivo pharmacokinetic study in rats were carried out. Among the tested polymers, Eudragit E/HCl was the most effective solid dispersion for the solubilization of trans-resveratrol. Eudragit E/HCl significantly inhibited the precipitation of trans-resveratrol in a pH 1.2 dissolution medium in a dose-dependent manner. The amorphous Eudragit E/HCl solid dispersion at a trans-resveratrol/polymer ratio of 10/90 exhibited a high degree of supersaturation without trans-resveratrol precipitation for at least 48 h by the formation of Eudragit E/HCl micelles. In rats, the absolute oral bioavailability (F%) of trans-resveratrol from Eudragit E/HCl solid dispersion (10/90) was estimated to be 40%. Therefore, trans-resveratrol-loaded Eudragit E/HCl solid dispersions prepared by spray drying offer a promising formulation strategy with high oral bioavailability for developing high-quality health supplements, nutraceutical, and pharmaceutical products.


Sign in / Sign up

Export Citation Format

Share Document