scholarly journals Dispersion-controlled docking preference: multi-spectroscopic study on complexes of dibenzofuran with alcohols and water

2019 ◽  
Vol 21 (29) ◽  
pp. 16032-16046 ◽  
Author(s):  
D. Bernhard ◽  
M. Fatima ◽  
A. Poblotzki ◽  
A. L. Steber ◽  
C. Pérez ◽  
...  

The planarity and rigidity of dibenzofuran inverts the docking preference for increasingly bulky R-OH solvent molecules, compared to the closely related diphenyl ether. Now, London dispersion favors OH⋯π hydrogen bonding.

2020 ◽  
Vol 22 (3) ◽  
pp. 1525-1533 ◽  
Author(s):  
Luisa Weirich ◽  
Juliana Magalhães de Oliveira ◽  
Christian Merten

A VCD spectroscopic analysis of selected model systems for solute–solvent interactions of chiral diols with hydrogen bonding solvents DMSO and ACN.


1993 ◽  
Vol 58 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Imad Al-Bala'a ◽  
Richard D. Bates

The role of more than one binding site on a nitroxide free radical in magnetic resonance determinations of the properties of the complex formed with a hydrogen donor is examined. The expression that relates observed hyperfine couplings in EPR spectra to complex formation constants and concentrations of each species in solution becomes much more complex when multiple binding sites are present, but reduces to a simpler form when binding at the two sites occurs independently and the binding at the non-nitroxide site does not produce significant differences in the hyperfine coupling constant in the complexed radical. Effects on studies of hydrogen bonding between multiple binding site nitroxides and hydrogen donor solvent molecules by other magnetic resonance methods are potentially more extreme.


2021 ◽  
Vol 22 (10) ◽  
pp. 5380
Author(s):  
Boris A. Kolesov

The work outlines general ideas on how the frequency and the intensity of proton vibrations of X–H×××Y hydrogen bonding are formed as the bond evolves from weak to maximally strong bonding. For this purpose, the Raman spectra of different chemical compounds with moderate, strong, and extremely strong hydrogen bonds were obtained in the temperature region of 5 K–300 K. The dependence of the proton vibrational frequency is schematically presented as a function of the rigidity of O-H×××O bonding. The problems of proton dynamics on tautomeric O–H···O bonds are considered. A brief description of the N–H···O and C–H···Y hydrogen bonds is given.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 196 ◽  
Author(s):  
Mojca Kržan ◽  
Jan Keuschler ◽  
Janez Mavri ◽  
Robert Vianello

We used a combination of density functional theory (DFT) calculations and the implicit quantization of the acidic N–H and O–H bonds to assess the effect of deuteration on the binding of agonists (2-methylhistamine and 4-methylhistamine) and antagonists (cimetidine and famotidine) to the histamine H2 receptor. The results show that deuteration significantly increases the affinity for 4-methylhistamine and reduces it for 2-methylhistamine, while leaving it unchanged for both antagonists, which is found in excellent agreement with experiments. The revealed trends are interpreted in the light of the altered strength of the hydrogen bonding upon deuteration, known as the Ubbelohde effect, which affects ligand interactions with both active sites residues and solvent molecules preceding the binding, thus providing strong evidence for the relevance of hydrogen bonding for this process. In addition, computations further underline an important role of the Tyr250 residue for the binding. The obtained insight is relevant for the therapy in the context of (per)deuterated drugs that are expected to enter therapeutic practice in the near future, while this approach may contribute towards understanding receptor activation and its discrimination between agonists and antagonists.


2006 ◽  
Vol 84 (7) ◽  
pp. 949-959 ◽  
Author(s):  
Letitia M Gruia ◽  
Fernande D Rochon ◽  
André L Beauchamp

The trischelate [Cr(H2biim)3](NO3)3 complex of 2,2′-biimidazole (H2biim) was obtained by reacting CrCl3·3THF with [Ag(H2biim)](NO3) in methanol. In the solvent-free material, each ligand forms two N-H···O bonds to a nitrate ion and generates locally neutral [Cr(H2biim)3](NO3)3 units. A methanol solvate was also obtained in which intermolecular interactions involve optimal use of the hydrogen-bonding ability of the [Cr(H2biim)3]3+ cations, NO3– anions, and methanol molecules. In both cases, there is no long-range regular organization of the complex units. Deprotonation of [Cr(H2biim)3](NO3)3 with NaOCH3 yielded neutral Cr(Hbiim)3. Its powder pattern is similar to that of Ru(Hbiim)3, suggesting that it also consists of mutually perpendicular interlocked honeycomb sheets. Recrystallization by slow diffusion of diisopropyl ether into a methanol solution yielded a porous material of composition Cr(Hbiim)3·2.6C6H14O in which superposed honeycomb sheets create infinite channels (~13 Å diameter) filled with disordered solvent molecules. A totally different structure is adopted by the solvate Cr(Hbiim)3·C6H6·2H2O, where the benzene molecule is encapsulated in a cavity created by five complex molecules.Key words: chromium, biimidazole, supramolecular, crystal structure, hydrogen bonding.


1960 ◽  
Vol 38 (6) ◽  
pp. 896-910 ◽  
Author(s):  
J. C. Dearden ◽  
W. F. Forbes

Intermolecular hydrogen bonding in anilines and phenols can be subdivided into bonding involving solute molecules only, and into bonding involving both solute and solvent molecules. Interactions which do not involve hydrogen bonding are also possible between solute and solvent molecules. Spectral effects which may be associated with each of these interactions are described and discussed for anilines and phenols. By noting the effects of substituents on the various interactions, tentative conclusions can be deduced concerning the nature of these interactions.


Author(s):  
Dharmalingam Sivanesan ◽  
Hyung Min Kim ◽  
Yoon Sungho

The title complex, [Rh(C10H15)Cl(C14H12N2O4)]Cl·2C4H5NO3, has been synthesized by a substitution reaction of the precursor [bis(2,5-dioxopyrrolidin-1-yl) 2,2′-bipyridine-4,4′-dicarboxylate]chlorido(pentamethylcyclopentadienyl)rhodium(III) chloride with NaOCH3. The RhIIIcation is located in an RhC5N2Cl eight-coordinated environment. In the crystal, 1-hydroxypyrrolidine-2,5-dione (NHS) solvent molecules form strong hydrogen bonds with the Cl−counter-anions in the lattice and weak hydrogen bonds with the pentamethylcyclopentadienyl (Cp*) ligands. Hydrogen bonding between the Cp* ligands, the NHS solvent molecules and the Cl−counter-anions form links in a V-shaped chain of RhIIIcomplex cations along thecaxis. Weak hydrogen bonds between the dimethyl 2,2′-bipyridine-4,4′-dicarboxylate ligands and the Cl−counter-anions connect the components into a supramolecular three-dimensional network. The synthetic route to the dimethyl 2,2′-bipyridine-4,4′-dicarboxylate-containing rhodium complex from the [bis(2,5-dioxopyrrolidin-1-yl) 2,2′-bipyridine-4,4′-dicarboxylate]rhodium(III) precursor may be applied to link Rh catalysts to the surface of electrodes.


Sign in / Sign up

Export Citation Format

Share Document