Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions

2020 ◽  
Vol 13 (6) ◽  
pp. 1568-1592 ◽  
Author(s):  
Ranjusha Rajagopalan ◽  
Yougen Tang ◽  
Chuankun Jia ◽  
Xiaobo Ji ◽  
Haiyan Wang

Organic materials offer a new opportunity to develop high-performance, low-cost, environmentally benign sodium ion batteries. This review provides insights into the different sodium storage mechanisms in various categories of organic materials.

2020 ◽  
Vol 7 (2) ◽  
pp. 402-410 ◽  
Author(s):  
Ghulam Yasin ◽  
Muhammad Arif ◽  
Tahira Mehtab ◽  
Muhammad Shakeel ◽  
Muhammad Asim Mushtaq ◽  
...  

We designed a cost-effective and novel strategy for the construction of hard carbon spheres enveloped with graphene networks as a high performance anode material for sodium-ion batteries.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1233
Author(s):  
Wen Luo ◽  
Jingke Ren ◽  
Wencong Feng ◽  
Xingbao Chen ◽  
Yinuo Yan ◽  
...  

Sodium-ion batteries (SIBs) are considered a potential alternative to lithium-ion batteries (LIBs) for energy storage due to their low cost and the large abundance of sodium resources. The search for new anode materials for SIBs has become a vital approach to satisfying the ever-growing demands for better performance with higher energy/power densities, improved safety and a longer cycle life. Recently, antimony (Sb) has been extensively researched as a promising candidate due to its high specific capacity through an alloying/dealloying process. In this review article, we will focus on different categories of the emerging Sb based anode materials with distinct sodium storage mechanisms including Sb, two-dimensional antimonene and antimony chalcogenide (Sb2S3 and Sb2Se3). For each part, we emphasize that the novel construction of an advanced nanostructured anode with unique structures could effectively improve sodium storage properties. We also highlight that sodium storage capability can be enhanced through designing advanced nanocomposite materials containing Sb based materials and other carbonaceous modification or metal supports. Moreover, the recent advances in operando/in-situ investigation of its sodium storage mechanism are also summarized. By providing such a systematic probe, we aim to stress the significance of novel nanostructures and advanced compositing that would contribute to enhanced sodium storage performance, thus making Sb based materials as promising anodes for next-generation high-performance SIBs.


2017 ◽  
Vol 8 (1) ◽  
pp. 160-164 ◽  
Author(s):  
Qidong Li ◽  
Qiulong Wei ◽  
Wenbin Zuo ◽  
Lei Huang ◽  
Wen Luo ◽  
...  

A new anode material, Fe3S4, shows superior electrochemical performance and a novel mechanism for sodium storage.


2016 ◽  
Vol 4 (34) ◽  
pp. 13046-13052 ◽  
Author(s):  
Pin Liu ◽  
Yunming Li ◽  
Yong-Sheng Hu ◽  
Hong Li ◽  
Liquan Chen ◽  
...  

This study reports a hard carbon material derived from a waste biomass of corn cob and the influence of carbonized temperature on electrochemical performance. This study provides a promising anode material with low cost, high initial coulombic efficiency and excellent cycle performance, making sodium-ion batteries closer to practical applications.


Author(s):  
Yawei Zhang ◽  
Wei Zhong ◽  
Pingping Tan ◽  
Yubin Niu ◽  
Xuan Zhang ◽  
...  

The heterostructure SnSe2/CoSe2 core encapsulated in a carbon nanobox shell guarantees the structural stability and further ensures stable high performance for sodium ion batteries.


2019 ◽  
Vol 7 (11) ◽  
pp. 6363-6373 ◽  
Author(s):  
Wenlong Shao ◽  
Fangyuan Hu ◽  
Ce Song ◽  
Jinyan Wang ◽  
Cheng Liu ◽  
...  

N, S-co-doped hierarchical porous carbon with stable sodium storage were prepared by designing the precursors and changing the reaction temperature.


2020 ◽  
Vol 49 (44) ◽  
pp. 15712-15717
Author(s):  
Lin Sun ◽  
Jie Xie ◽  
Xixi Zhang ◽  
Lei Zhang ◽  
Jun Wu ◽  
...  

Carbon nanobubbles are regarded as one of the most promising carbon-based anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), with significantly improved capacity and superior cycling stability.


ChemSusChem ◽  
2012 ◽  
Vol 6 (1) ◽  
pp. 56-60 ◽  
Author(s):  
Heng-guo Wang ◽  
Zhong Wu ◽  
Fan-lu Meng ◽  
De-long Ma ◽  
Xiao-lei Huang ◽  
...  

2019 ◽  
Vol 9 (22) ◽  
pp. 1900603 ◽  
Author(s):  
Jae Hyeon Jo ◽  
Ji Ung Choi ◽  
Min Kyung Cho ◽  
Yauhen Aniskevich ◽  
Hyungsub Kim ◽  
...  

2017 ◽  
Vol 1 (5) ◽  
pp. 1090-1097 ◽  
Author(s):  
Rohit Ranganathan Gaddam ◽  
Edward Jiang ◽  
Nasim Amiralian ◽  
Pratheep K. Annamalai ◽  
Darren J. Martin ◽  
...  

Spinifex grass derived hard carbon is used as anodes for sodium-ion batteries. Extraordinary stability and capacity retention of ∼300 mA h g−1 on prolonged cycling against sodium was observed. The eco-friendly and low-cost synthesis procedure make the biomass derived carbon material promising for energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document