Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice

2020 ◽  
Vol 11 (1) ◽  
pp. 1037-1048 ◽  
Author(s):  
Yuanyuan Hu ◽  
Fawen Yin ◽  
Zhongyuan Liu ◽  
Hongkai Xie ◽  
Yunsheng Xu ◽  
...  

Acerola polysaccharides ameliorate HFD-induced NAFLD by inhibiting lipogenesis, reducing oxidative stress and inflammation, and promoting the mitochondrial function in C57BL/6 mice.

2020 ◽  
Vol 11 (4) ◽  
pp. 2953-2968 ◽  
Author(s):  
Xiaobing Yang ◽  
Wenjing Mo ◽  
Chuanjin Zheng ◽  
Wenzhi Li ◽  
Jian Tang ◽  
...  

Non-alcoholic fatty liver disease is associated with gut microbiota, oxidative stress, and inflammation.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 480 ◽  
Author(s):  
Weixin Ke ◽  
Pan Wang ◽  
Xuehua Wang ◽  
Xiaolu Zhou ◽  
Xiaosong Hu ◽  
...  

The root of Platycodon grandiflorus (PG), with hepatoprotective and anti-oxidation effects, has a long history of being used as food and herbal medicine in Asia. However, the mechanism of PG against non-alcoholic fatty liver disease (NAFLD) is still not clear. The aim of this study was to investigate the mechanism of PG suppressing the development of NAFLD induced by a high-fat diet (HFD) in mice. Male C57BL/6J mice were fed with either a standard chow diet or a HFD, either supplemented with or without PG, for 16 weeks. Serum lipids, liver steatosis, oxidative stress and insulin sensitivity were determined. Expressions or activities of hepatic enzymes in the related pathways were analyzed to investigate the mechanisms. PG significantly reduced HFD-induced hepatic injury and hyperlipidemia, as well as hepatic steatosis via regulating phosphorylation of acetyl-CoA carboxylase (p-ACC) and expression of fatty acid synthase (FAS). In addition, PG ameliorated oxidative stress by restoring glutathione (GSH) content and antioxidant activities, and improved insulin sensitivity by regulating the PI3K/Akt/GSK3β signaling pathway. Our data showed that dietary PG have profound effects on hepatic insulin sensitivity and oxidative stress, two key factors in the pathogenesis of NAFLD, demonstrating the potential of PG as a therapeutic strategy for NAFLD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Kawamura ◽  
Hiroaki Tanaka ◽  
Ryota Tachibana ◽  
Kento Yoshikawa ◽  
Shintaro Maki ◽  
...  

AbstractWe aimed to investigate the effects of maternal tadalafil therapy on fetal programming of metabolic function in a mouse model of fetal growth restriction (FGR). Pregnant C57BL6 mice were divided into the control, L-NG-nitroarginine methyl ester (L-NAME), and tadalafil + L-NAME groups. Six weeks after birth, the male pups in each group were given a high-fat diet. A glucose tolerance test (GTT) was performed at 15 weeks and the pups were euthanized at 20 weeks. We then assessed the histological changes in the liver and adipose tissue, and the adipocytokine production. We found that the non-alcoholic fatty liver disease activity score was higher in the L-NAME group than in the control group (p < 0.05). Although the M1 macrophage numbers were significantly higher in the L-NAME/high-fat diet group (p < 0.001), maternal tadalafil administration prevented this change. Moreover, the epididymal adipocyte size was significantly larger in the L-NAME group than in the control group. This was also improved by maternal tadalafil administration (p < 0.05). Further, we found that resistin levels were significantly lower in the L-NAME group compared to the control group (p < 0.05). The combination of exposure to maternal L-NAME and a high-fat diet induced glucose impairment and non-alcoholic fatty liver disease. However, maternal tadalafil administration prevented these complications. Thus, deleterious fetal programming caused by FGR might be modified by in utero intervention with tadalafil.


2014 ◽  
Vol 10 (6) ◽  
pp. 2917-2923 ◽  
Author(s):  
XIANG WANG ◽  
QIAOHUA REN ◽  
TAO WU ◽  
YONG GUO ◽  
YONG LIANG ◽  
...  

2013 ◽  
Vol 41 (03) ◽  
pp. 487-502 ◽  
Author(s):  
Wei-Xi Cui ◽  
Jie Yang ◽  
Xiao-Qing Chen ◽  
Qian Mao ◽  
Xiang-Lan Wei ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.


Sign in / Sign up

Export Citation Format

Share Document