Lanthanum chloride induces neuron damage by activating the nuclear factor-kappa B signaling pathway in activated microglia

Metallomics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1277-1287 ◽  
Author(s):  
Licheng Yan ◽  
Jinghua Yang ◽  
Miao Yu ◽  
Yanxin Lu ◽  
Liling Huang ◽  
...  

Lanthanum is a rare earth element which can have adverse effects on the central nervous system (CNS).

1997 ◽  
Vol 57 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Weifang Zhu ◽  
Suqin Xu ◽  
Pingping Shao ◽  
Hui Zhang ◽  
Dongsen Wu ◽  
...  

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Hiroshi Kataoka ◽  
Daisuke Shimada ◽  
Hitoki Nanaura ◽  
Kazuma Sugie

ABSTRACT This case is the first document to describe a patient receiving anti-programmed cell death 1 (PD-1) antibodies which showed cranial dura matter involvement. According to the increasing use of anti-PD-1 monoclonal antibodies, adverse effects can occur in several organs since its ligand PD-L1 and PD-L2 are expressed in a wide variety of tissues. The estimated rate of neurological complications is 1–4.2% of patients, and neuromuscular disorders are the most common. Adverse effects on the central nervous system including encephalitis are less frequent. Here, a patient receiving anti-PD-1 antibodies showed cranial dura matter involvement, and the dura enhancement on MRI was resolved by withdrawal of the treatment with anti-PD-1 antibodies only.


Oncoreview ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 0-0 ◽  
Author(s):  
Łukasz Galus

Ifosfamide is a cytostatic drug commonly used in chemotherapy. One of the common adverse effects resulting from the treatment with ifosfamide is encephalopathy. This paper describes a case study of a 64-year-old patient who suffered from a full-blown encephalopathy as a result of chemotherapy administered during the treatment of fibrosarcoma of the femur. It provides a hypothesis of the mechanism behind toxic effects of ifosfamide on the central nervous system and elaborates on a number of documented ways of preventing aforementioned complications.


2018 ◽  
Vol 47 (2) ◽  
pp. 842-850 ◽  
Author(s):  
Bo Hu ◽  
Guangtao Xu ◽  
Xiaomin Zhang ◽  
Long Xu ◽  
Hong Zhou ◽  
...  

Background/Aims: Paeoniflorin (PF) is known to have anti-inflammatory and paregoric effects, but the mechanism underlying its analgesic effect remains unclear. The aim of this study was to clarify the effect of PF on Freund’s complete adjuvant (CFA)-induced inflammatory pain and explore the underlying molecular mechanism. Methods: An inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After intrathecal injection of PF daily for 8 consecutive days, thermal and mechanical withdrawal thresholds, the levels of inflammatory factors TNF-α, IL-1β and IL-6, microglial activity, and the expression of Akt-NF-κB signaling pathway in the spinal cord tissue were detected by animal ethological test, cell culture, enzyme-linked immunosorbent assay, immunofluorescence histochemistry, and western blot. Results: PF inhibited the spinal microglial activation in the CFA-induced pain model. The production of proinflammatory cytokines was decreased in the central nervous system after PF treatment both in vivo and in vitro. PF further displayed a remarkable effect on inhibiting the activation of Akt-NF-κB signaling pathway in vivo and in vitro. Conclusion: These results suggest that PF is a potential therapeutic agent for inflammatory pain and merits further investigation.


Sign in / Sign up

Export Citation Format

Share Document