scholarly journals Parameters affecting the synthesis of carbon dots for quantitation of copper ions

2019 ◽  
Vol 1 (7) ◽  
pp. 2553-2561 ◽  
Author(s):  
Yu-Syuan Lin ◽  
Yaling Lin ◽  
Arun Prakash Periasamy ◽  
Jinshun Cang ◽  
Huan-Tsung Chang

A simple, eco-friendly, and low-cost electrochemical approach has been applied to the synthesis of carbon dots from histidine hydrochloride in the absence or presence of halides at various potentials up to 10 V.

2021 ◽  
Vol 5 (1) ◽  
pp. 84-92
Author(s):  
Shuting Chen ◽  
Chaoqun Chen ◽  
Jian Wang ◽  
Fang Luo ◽  
Longhua Guo ◽  
...  

The Analyst ◽  
2021 ◽  
Vol 146 (20) ◽  
pp. 6297-6305
Author(s):  
Qinglan Miao ◽  
Ji Qi ◽  
Yuanyuan Li ◽  
Xinxia Fan ◽  
Dongmei Deng ◽  
...  

A novel paper-based chip that anchored zinc-doped carbon dots was constructed for sensitive and stable fluorescent detection of Cu2+. Zn doping increased the active sites for simplifying the modification of carbon dots.


2019 ◽  
Vol 17 (1) ◽  
pp. 1173-1184 ◽  
Author(s):  
Fengyun Tao ◽  
Yangping Liu ◽  
Junliang Chen ◽  
Peng Wang ◽  
Qing Huo

AbstractThe disposal of residues while manufacturing Chinese medicine has always been an issue that concerns pharmaceutical factories. Phanerochaete chrysosporium was inoculated into the residues of Magnolia officinalis for solid-phase fermentation to enzymatically hydrolyze the lignin in the residues and thus to improve the efficiency of removal of the copper ions from residues for the utilization of residues from Chinese medicine. With the increase in activities of lignin-degrading enzymes, especially during the fermentation days 6 to 9, the removal rate of copper ions using M. officinalis residues increased dramatically. The rate of removal reached the maximum on the 14th day and was 3.15 times higher than the initial value. The rate of adsorption of copper ions on the fermentation-modified M. officinalis residues followed the pseudo-second-order kinetics. The adsorption isotherms were consistent with the Freundlich models. The adsorption enthalpy was positive, indicating that it was endothermic and elevation in temperature was favorable to this adsorption process. The adsorption free energy was negative, implying the spontaneity of the process. The copper ions adsorbed could be effectively recovered using 0.2 M hydrochloric acid solution. After five successive cycles of adsorption-regeneration, the fermentation-modified M. officinalis residues exhibited a stable adsorption capacity and greater reusability. The M. officinalis residues fermented with P. chrysosporium are low-cost and environmentally friendly copper ions adsorbent, and this preparation technique realizes the optimum utilization of Chinese medicine residues.


RSC Advances ◽  
2014 ◽  
Vol 4 (87) ◽  
pp. 46437-46443 ◽  
Author(s):  
Hao Li ◽  
Juan Liu ◽  
Manman Yang ◽  
Weiqian Kong ◽  
Hui Huang ◽  
...  

The carbon dots/tyrosinase hybrid as a low-cost fluorescent probe for the detection of dopamine exhibits high sensitivity, stability, and precision.


2022 ◽  
Vol 1048 ◽  
pp. 459-467
Author(s):  
Sadamanti Sireesha ◽  
Utkarsh Upadhyay ◽  
Inkollu Sreedhar ◽  
K.L. Anitha

Heavy metal contamination has been one of the primary environmental concerns for many years in most developing countries. As the industries continue to search for low-cost and efficient adsorbents to treat their effluents contaminated with these toxic metal ions, biomass-based adsorbents have gained much attention. This work exploits such ten different biomass-based adsorbents (namely, Karanja de-oiled cake, Neem de-oiled cake, Neem leaves, Moringa Leaves, Bagasse, Mango Kernel, Wheat Bran, Eucalyptus, Fly ash, and Corn cob) for adsorption of copper ions in particular. Further, selected adsorbents (namely Karanja de-oiled cake, Neem de-oiled cake, Bagasse, Wheat Bran and Mango Kernel) were taken to the next stage and modified to biochar and tested again for copper removal. Among the biomass-based adsorbents, the highest adsorption capacity was observed for Neem de-oiled cake (equal to 9.6 mg/g). While for biochar-based adsorbents, Bagasse showed the highest adsorption capacity for copper (equivalent to 13.0 mg/g).


2010 ◽  
Vol 75 (6) ◽  
pp. 845-853 ◽  
Author(s):  
Hassan Mousavi ◽  
Abdorrahman Hosseinifar ◽  
Vahdat Jahed

The influence of pH, adsorbent dose, initial Cu(II) concentration and contact time on the removal of Cu(II) from aqueous solution by the batch adsorption technique using waste tire rubber ash as a low-cost adsorbent was investigated. The adsorption equilibrium was achieved after 2 h at pH 4-6, the optimum for the adsorption of Cu(II) ions. A dose of 1.5 g/L of adsorbent was sufficient for the optimum removal of copper ions. The experimental data were analyzed by the Langmuir and Freundlich isotherms and the corresponding sorption constants were evaluated. The adsorption kinetics data were fitted by a first-order equation. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that waste tire rubber ash was capable of removing copper ions from industrial wastewater samples.


2017 ◽  
Vol 75 ◽  
pp. 1456-1464 ◽  
Author(s):  
Poushali Das ◽  
Sayan Ganguly ◽  
Madhuparna Bose ◽  
Subhadip Mondal ◽  
Amit Kumar Das ◽  
...  
Keyword(s):  

Nanoscale ◽  
2018 ◽  
Vol 10 (24) ◽  
pp. 11293-11296 ◽  
Author(s):  
Apostolos Koutsioukis ◽  
Antonios Akouros ◽  
Radek Zboril ◽  
Vasilios Georgakilas

We describe the efficient purification of violet, blue, green and yellow emitting C-dots using a fast, low cost and scalable procedure based on solid phase extraction with alumina.


2018 ◽  
Vol 88 ◽  
pp. 262-268 ◽  
Author(s):  
Vaibhav M. Naik ◽  
Dattatray B. Gunjal ◽  
Anil H. Gore ◽  
Samadhan P. Pawar ◽  
Sunanda T. Mahanwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document