scholarly journals Ceria/cobalt borate hybrids as efficient electrocatalysts for water oxidation under neutral conditions

2019 ◽  
Vol 1 (9) ◽  
pp. 3686-3692 ◽  
Author(s):  
Xuemei Zhou ◽  
Sijia Guo ◽  
Qiran Cai ◽  
Shaoming Huang

Oxygen evolution reaction (OER) catalysts are of importance for electrochemical water splitting and fuel generation.

2019 ◽  
Vol 7 (46) ◽  
pp. 26410-26420 ◽  
Author(s):  
Maira Sadaqat ◽  
Laraib Nisar ◽  
Noor-Ul-Ain Babar ◽  
Fayyaz Hussain ◽  
Muhammad Naeem Ashiq ◽  
...  

Electrochemical water splitting is economically unviable due to the sluggish kinetics of the anodically uphill oxygen evolution reaction (OER).


Nanoscale ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 3378-3385 ◽  
Author(s):  
Changhong Zhan ◽  
Zheng Liu ◽  
Yang Zhou ◽  
Mingliang Guo ◽  
Xiaolin Zhang ◽  
...  

Electrochemical water splitting requires an efficient water oxidation catalyst to accelerate the oxygen evolution reaction (OER).


2022 ◽  
Author(s):  
Fei Yu ◽  
Tingting Huo ◽  
Quanhua Deng ◽  
Guoan Wang ◽  
Yuguo Xia ◽  
...  

Expediting the oxygen evolution reaction (OER) is the key to achieving efficient photocatalytic overall water splitting. Herein, single-atom Co−OH modified polymeric carbon nitride (Co-PCN) was synthesized with single-atom loading increased...


Nanoscale ◽  
2021 ◽  
Author(s):  
Haibin Ma ◽  
ChangNing SUN ◽  
Zhili Wang ◽  
Qing Jiang

It is of great importance to develop efficient and low-cost oxygen evolution reaction (OER) electrocatalysts for electrochemical water splitting. Herein, S doped NiCoVOx nanosheets grown on Ni-Foam (S-NiCoVOx/NF) with modified...


RSC Advances ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 5701-5710 ◽  
Author(s):  
Abdul Qayoom Mugheri ◽  
Aneela Tahira ◽  
Umair Aftab ◽  
Muhammad Ishaq Abro ◽  
Saleem Raza Chaudhry ◽  
...  

Due to the increasing energy consumption, designing efficient electrocatalysts for electrochemical water splitting is highly demanded.


Nanoscale ◽  
2020 ◽  
Author(s):  
Ning Xie ◽  
Dong-Dong Ma ◽  
Xintao Wu ◽  
Qi-Long Zhu

Constructing high-performance and cost-effective electrocatalysts for water oxidation, particularly for overall water splitting is extremely needed, whereas still challenging. Herein, based on an economical and facile one-step surface sulfurization strategy,...


2015 ◽  
Vol 51 (87) ◽  
pp. 15815-15818 ◽  
Author(s):  
Shaojun Ma ◽  
Qing Zhu ◽  
Zhi Zheng ◽  
Wenlou Wang ◽  
Dongming Chen

This work reports for the first time LiNi1−xFexPO4@C nanocomposites as highly effective catalysts for electrochemical oxygen evolution reaction (OER).


2018 ◽  
Vol 14 ◽  
pp. 1436-1445 ◽  
Author(s):  
Jonas Weidner ◽  
Stefan Barwe ◽  
Kirill Sliozberg ◽  
Stefan Piontek ◽  
Justus Masa ◽  
...  

The electrochemical water splitting commonly involves the cathodic hydrogen and anodic oxygen evolution reactions (OER). The oxygen evolution reaction is more energetically demanding and kinetically sluggish and represents the bottleneck for a commercial competitiveness of electrochemical hydrogen production from water. Moreover, oxygen is essentially a waste product of low commercial value since the primary interest is to convert electrical energy into hydrogen as a storable energy carrier. We report on the anodic oxidation of 5-hydroxymethylfurfural (HMF) to afford the more valuable product 2,5-furandicarboxylic acid (FDCA) as a suitable alternative to the oxygen evolution reaction. Notably, HMF oxidation is thermodynamically more favorable than water oxidation and hence leads to an overall improved energy efficiency for H2 production. In addition, contrary to the “waste product O2”, FDCA can be further utilized, e.g., for production of polyethylene 2,5-furandicarboxylate (PEF), a sustainable polymer analog to polyethylene terephthalate (PET) and thus represents a valuable product for the chemical industry with potential large scale use. Various cobalt–metalloid alloys (CoX; X = B, Si, P, Te, As) were investigated as potential catalysts for HMF oxidation. In this series, CoB required 180 mV less overpotential to reach a current density of 55 mA cm−2 relative to OER with the same electrode. Electrolysis of HMF using a CoB modified nickel foam electrode at 1.45 V vs RHE achieved close to 100% selective conversion of HMF to FDCA at 100% faradaic efficiency.


Nanoscale ◽  
2021 ◽  
Author(s):  
Ting Li ◽  
Qing Zhang ◽  
Xiao Hu Wang ◽  
Juan Luo ◽  
Li Shen ◽  
...  

Electrochemical water splitting is widely studied in the hope of solving the environmental deterioration and energy shortage. The design of inexpensive metal catalysts showing desired catalytic performance and durable stability...


Sign in / Sign up

Export Citation Format

Share Document