scholarly journals Tunable physical properties in BiAl1−xMnxO3 thin films with novel layered supercell structures

2020 ◽  
Vol 2 (1) ◽  
pp. 315-322 ◽  
Author(s):  
Shikhar Misra ◽  
Leigang Li ◽  
Xingyao Gao ◽  
Jie Jian ◽  
Zhimin Qi ◽  
...  

Morphology tuning of Bi-based layered structures by varying the Al : Mn molar ratio leads to tunable magnetic and optical properties.

2005 ◽  
Vol 20 (11) ◽  
pp. 3141-3149 ◽  
Author(s):  
Li-Lan Yang ◽  
Yi-Sheng Lai ◽  
J.S. Chen ◽  
P.H. Tsai ◽  
C.L. Chen ◽  
...  

Thin films of SiO2–TiO2 composite oxides with various SiO2:TiO2 compositions were prepared by the sol-gel method, using tetraethylorthosilicate (TEOS) and titanium tetraisopropoxide (TTIP) as precursors. The composition, crystal structure, and chemical bonding configuration of the as-deposited and annealed SiO2–TiO2 thin films were analyzed using Rutherford backscattering spectrometry (RBS), glancing incident angle x-ray diffraction (GIAXRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Optical properties of the films were characterized by spectroscopic ellipsometry and ultraviolet-visible spectrophotometry. The Si/Ti ratios in the SiO2–TiO2 films agree with the TEOS/TTIP molar ratio in the sol-gel precursor. When the TEOS/(TEOS + TTIP) ratio is greater than 40%, the SiO2–TiO2 thin films remain amorphous (without formation of TiO2 crystalline phase) after annealing at temperatures as high as 700 °C. FTIR spectra indicate that the quantity of Si–O–Ti bonding can be maximized when the TEOS:TTIP in the precursor is 80%:20%. The refractive index of the SiO2–TiO2 films increases approximately linearly to the mixing ratio of TTIP/(TEOS + TTIP). However, SiO2-rich films possess higher ultraviolet-visible transmittance than the TiO2-rich films. The modification of microstructure and chemical bonding configuration in the SiO2–TiO2 films by the composition and its influence on the optical properties are discussed.


Author(s):  
Wiktor Matysiak ◽  
Tomasz Tański ◽  
Marta Zaborowska

Purpose: It has been recently observed, that zinc oxide thin films are gaining much popularity, particularly in applications such as toxic gas sensors, photocatalytic materials and photovoltaic cells. Due to much better physical properties of ZnO compared to the ones of titanium dioxide (TiO2), which is currently the most used material in dye sensitized solar cells, efforts are being made to fabricate DSSCs with thin films and/or nanostructures, including nanowires, nanofibres and nanoparticles of zinc oxide. Design/methodology/approach: In this paper, zinc oxide thin films were prepared using sol-gel and spin coating methods from Zn(COO)2 x 2H2O dissolved in ethanol and acetic acid with ZnO monocrystalline nanoparticles of 0 and 10% (wt.) relative to the final concentration of produced solutions. The effect of calcination process on ZnO thin films at 600°C were examined using atomic force microscope to investigate the morphology of semiconductor coatings, infrared spectroscopy to prove the chemical structure of material. Besides, optical properties were analysed on the basis of absorbance in the function of wavelength spectra and the values of energy band gaps were studied. Findings: The topography analysis of ZnO thin films showed an increase in roughness with the increase of zinc oxide nanoparticles in the thin films material. In addition, the analysis of the optical properties of ZnO thin films showed a decrease in absorption level in the range of near-ultraviolet wavelength for the obtained layers after annealing. Research limitations/implications: It was found that ZnO thin films produced by spin coating and calcination method are a proper material for photoanode in dye-sensitized solar cells, as zinc oxide layers provide better conductivity across the photovoltaic cell. Practical implications: The results provide the possibility of production DSSCs with zinc oxide thin films as photoanode. Originality/value: The dye-sensitized solar cells based on zinc oxide photoanodes could be alternative semiconductor material to titanium dioxide, which is used in nowadays solar cells. It was estimated that ZnO, especially zinc oxide nanostructures have much better physical properties, than TiO2 structures. What is more, zinc oxide thin layers are characterized by the lower energy losses resulting from the physical properties of such nanostructures, which results in more efficient solar energy into electricity conversion.


2012 ◽  
Vol 22 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Tran Thanh Thai ◽  
Pham Phi Hung ◽  
Vo Thach Son ◽  
Vu Thi Bich

Polycrystalline CuInS\(_{2}\) (CIS) absorber films for solar cells were prepared by spray pyrolysis of aqueuos solution of copper chloride, indium chloride and thiourea onto heated glass substrates. By optimizing the spray parameters, such as reducing/increasing the temperature of the substrate and molar ratio of Cu/In in the spraying solution, the optical characteristics of films, which are well matched to the solar spectrum, were identified. In all cases, those CIS thin films were of p-type conductivity. Transmission measurements were performed to examine the optical properties of the films; the absorption coefficient and the optical band gap of the films were calculated by transmission spectra. The absorption spectra of the films showed that this compound is a direct band gap one and its gap varied between 1.30 - 1.78 eV. Those thin films were analyzed by X-ray diffraction in order to understand the effect of layers structure on their optical properties.


2021 ◽  
Vol MA2021-02 (13) ◽  
pp. 637-637
Author(s):  
Nobuyuki Matsuki ◽  
Yuki Iida ◽  
Koki Kamada ◽  
Shotaro Toda ◽  
Tomomasa Sato

2021 ◽  
Vol 900 ◽  
pp. 143-154
Author(s):  
Souad G. Khalil ◽  
Mahdi M. Mutter ◽  
Oras A. Jassim

The development of niobium oxide (Nb2O5) thin films is an important work as a result of wide applications of this oxide in the field of material science and thin-film applications. In this study, thin-film microstructures of aluminum (Al)-doped Nb2O5 were prepared by DC plasma sputtering on glasses substrate. The ratio of doping was (0.5, 1, and 1.5) wt. % Al. The obtained samples were thermally treated at 450 °C. Characterized and analyzed the physical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and UV-Visible spectroscopy for optical properties investigation. Results showed that the average crystalline size of Nb2O5:0.5%Al film was found at 26.47 nm and the structure was a monoclinic phase for all samples. The distribution of grain size was found lower than 36.3 nm and uninformed particles on the surface. The analyzed optical properties showed the absorption decreased from 0.46 to 0.05 with increasing the wavelength and Low energy gap values decreased from 3.10 eV for Nb2O5 samples to 2.84 eV for 1.5%Al samples. In general, the doping by aluminum improved the physical properties of Nb2O5 films.


2013 ◽  
Vol 1565 ◽  
Author(s):  
Nobuhiko P. Kobayashi ◽  
R. Ernest Demaray ◽  
Junce Zhang ◽  
Kate J. Norris ◽  
David M. Fryauf ◽  
...  

ABSTRACTWe studied physical properties of titanium hafnium oxide (TixHf1-xO2) alloy thin films deposited by pulsed DC reactive magnetron sputtering with AC substrate bias. Thin films of two end oxides, hafnium oxides (HfO2) and titanium oxides (TiO2), and their alloys TixHf1-xO2 with a range of compositions deposited with and without the substrate bias were compared to study the dependence of physical properties of the thin films on the substrate bias. Structural, chemical and optical properties of the thin films were analyzed to assess inter-relationship among these properties. Thin films deposited with the AC substrate bias consistently show much higher refractive index and significantly lower optical extinction coefficient than those of thin films deposited without the substrate bias suggesting that characteristic microstructures developed in these thin films are responsible for the differences in the optical properties.


2014 ◽  
Vol 92 (7/8) ◽  
pp. 684-689 ◽  
Author(s):  
Sergey Kozyukhin ◽  
Alexey Sherchenkov ◽  
Alexey Babich ◽  
Petr Lazarenko ◽  
Huy Phuc Nguyen ◽  
...  

The influence of Bi doping on the thermal, electrical, and optical properties of Ge2Sb2Te5 thin films was investigated. The existence of two Bi concentration ranges with different influence of dopant on the properties of thin films was established. At low concentrations (0.5–1.0 wt.% of Bi), anomalous deviations of physical properties from monotonous concentration dependences were observed. This effect is explained by the use of percolation theory, where formation of infinite clusters is accompanied by critical phenomena at critical concentrations.


RSC Advances ◽  
2020 ◽  
Vol 10 (36) ◽  
pp. 21180-21190 ◽  
Author(s):  
Y. Bchiri ◽  
N. Bouguila ◽  
M. Kraini ◽  
R. Souissi ◽  
C. Vázquez-Vázquez ◽  
...  

Indium sulfide (In2S3) thin films have been synthesized on glass substrates using the spray technique (CSP).


RSC Advances ◽  
2015 ◽  
Vol 5 (49) ◽  
pp. 39103-39109 ◽  
Author(s):  
Weiping Zhou ◽  
Anming Hu ◽  
Shi Bai ◽  
Ying Ma ◽  
Denzel Bridges

Preparation of thin films with one-dimensional nanostructures and unique physical properties for high-performance electronic, optoelectronic, and electromechanical systems.


Sign in / Sign up

Export Citation Format

Share Document