A biocompatible high surface area ZnO-based molecularly imprinted polymer for the determination of meloxicam in water media and plasma

2019 ◽  
Vol 43 (22) ◽  
pp. 8492-8501 ◽  
Author(s):  
Ensiyeh Rahmati ◽  
Zahra Rafiee

Ultrasound-assisted solid-phase microextraction (SPME) by a functionalized high surface area ZnO nanoparticle (NP)-based molecularly imprinted polymer (MIP) followed by UV-Vis spectrophotometry was described as a selective, economic and rapid technique which was established for the extraction and preconcentration of meloxicam (MEL) in water media and plasma.

2020 ◽  
Vol 20 (3) ◽  
pp. 1807-1813 ◽  
Author(s):  
Yulin Wang ◽  
Xiuzhen Qiu ◽  
Yangyang Li ◽  
Huishi Guo ◽  
Wenguan Lu ◽  
...  

A novel molecularly imprinted polymer material based on the metal-organic framework NH2-MIL-101(Cr) (MOF-MIP) was prepared. The synthesized MOF-MIP was characterized by IR, XRD, SEM and N2 absorption. The characterization results displayed that the MOF-MIP which exhibited an octahedral shape had good dispersibility, good thermal stability and a high surface area. Subsequently, the adsorption behavior of MOF-MIP to diclofenac sodium (DS) in aqueous solution was examined. A series of adsorption experiments demonstrated that the MOF-MIP had high transfer mass rates and high sensitivity and selectivity for DS. Then the MOF-MIP was used as the adsorbent of dispersive micro-solid phase extraction (DMSPE) for the detection of DS in urine. Under optimum conditions, the average recovery of DS ranged from 88.3 to 101.6% with RSD of 5.6%. The described method provides a rapid route for determination of DS in human urine.


2018 ◽  
Vol 39 (20) ◽  
pp. 2581-2589 ◽  
Author(s):  
Nathália Soares Simões ◽  
Hanna Leijoto de Oliveira ◽  
Ricky Cássio Santos da Silva ◽  
Leila Suleimara Teixeira ◽  
Thaís Lorenna Souza Sales ◽  
...  

2017 ◽  
Vol 100 (6) ◽  
pp. 1869-1878 ◽  
Author(s):  
Bixia Yang ◽  
Lian Wang ◽  
Chunying Luo ◽  
Xixi Wang ◽  
Chengjun Sun

Abstract An analytical method was developed for the simultaneous determination of 11 aminoglycoside (AG) antibiotics, including amikacin, paromomycin, dihydrostreptomycin, gentamicin C1a, hygromycin, kanamycin, netilmicin, spectinomycin, sisomicin, streptomycin, and tobramycin in honey, milk, and pork samples by LC with tandem MS and molecularly imprinted polymer (MIP) SPE. The AG antibiotics in milk and homogenated meat samples were extracted with a solution composed of 10 mmol/L potassium dihydrogen phosphate, 0.4 mmol/L EDTA-Na2, and 2% trichloroacetic acid. For honey samples, the extractant was 50 mmol/L potassium dihydrogen phosphate. The extracts were cleaned up with MIP SPE cartridges. The separation was performed on a zwitter ionic-HILIC column (50 × 2.1 mm, 3.5 μm), with the mobile phase consisting of methanol, 0.3% formic acid, and 175 mmol/L ammonium formate at 0.50 mL/min in gradient elution. A triple-quadrupole mass spectrometer equipped with an electrospray ionization source, which was operated in positive mode, was used for detection. The quantification was based on matrix-matched calibration curves. The method was applied to real samples with three different matrixes. The LODs of the method were 2–30 μg/kg and the LOQs were 7–100 μg/kg; the average recovery ranged from 78.2 to 94.8%; intraday RSDs and interday RSDs were ≤15 and ≤18%, respectively; and the absolute values of matrix effect for all AGs were RSDs ≤23%.


Sign in / Sign up

Export Citation Format

Share Document