Rich N/O/S co-doped porous carbon with a high surface area from silkworm cocoons for superior supercapacitors

2019 ◽  
Vol 43 (48) ◽  
pp. 19372-19378 ◽  
Author(s):  
Jianyu Huang ◽  
Simin Liu ◽  
Zifang Peng ◽  
Zhuoxian Shao ◽  
Yuanyuan Zhang ◽  
...  

The synergistic effects of high surface area and abundant heteroatoms make porous carbons superior electrode materials.

2017 ◽  
Vol 41 (22) ◽  
pp. 13611-13618 ◽  
Author(s):  
Longfeng Hu ◽  
Li Ma ◽  
Qizhen Zhu ◽  
Lanyong Yu ◽  
Qi Wu ◽  
...  

Nitrogen-rich, high surface area, hierarchical porous carbons were simply prepared by the pyrolysis of a nitrogen-containing organic salt, and exhibit excellent rate capability in supercapacitors.


1995 ◽  
Vol 393 ◽  
Author(s):  
Oliver Chyan ◽  
Jin-Jian Chen ◽  
Min Liu ◽  
Michael G. Richmond ◽  
Kaiyuan Yang

ABSTRACTRecent advances in high surface area (HSA) electrode materials have played an important role in the development of high-performance batteries and fuel cells. HSA electrodes can significantly increase the power-density of batteries and fuel cells by enhancing the heterogeneous electrochemical reaction rate and concurrently reducing battery and fuel cell size and weight. The compactness of HSA electrodes can also reduce the ohmic potential drop, which has the clear advantage of reducing power losses. This paper reports results on utilizing direct metallization of porous substrates to prepare new HSA electrode materials. Specifically, Nickel HSA electrode materials, relevant to the Ni-Cd and metal-hydride rechargeable batteries, were prepared on porous carbon substrates by direct thermolysis of organometallic precursors and/or electroless Ni plating. SEM and XPS characterization results indicate a Ni metallic film was conformally coated over the porous carbon skeleton. The real electroactive areas were determined electrochemically in NaOH solution and results will be discussed in correlation with the metallization conditions.


MethodsX ◽  
2021 ◽  
pp. 101464
Author(s):  
Yichen Wu ◽  
Nan Zhang ◽  
Charles-François de Lannoy

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Mohamed Wahab Mahamed Hisham ◽  
Mohd Ambar Yarmo

Porous carbon obtained by dehydrating agent, concentrated sulfuric acid (H2SO4), from biomass containing high cellulose (filter paper (FP), bamboo waste, and empty fruit bunches (EFB)) shows very high surface area and better thermal behavior. At room temperature (without heating), treatment of H2SO4removed all the water molecules in the biomass and left the porous carbon without emitting any gaseous byproducts. Brunauer-Emmett-Teller (BET) surface analysis has shown that bamboo-based carbon has good properties with higher surface area (507.8 m2/g), micropore area (393.3 m2/g), and better thermal behavior (compared to FP and EFB) without any activation or treatment process. By acid treatment of biomass, it was shown that higher carbon composition obtained from FP (85.30%), bamboo (77.72%), and EFB (76.55%) is compared to carbon from carbonization process. Under optimal sulfuric acid (20 wt.%) uses, high carbon yield has been achieved for FP (47.85 wt.%), bamboo (62.4 wt.%), and EFB (55.4 wt.%).


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75728-75734 ◽  
Author(s):  
Huishan Shang ◽  
Yanjie Lu ◽  
Feng Zhao ◽  
Cong Chao ◽  
Bing Zhang ◽  
...  

Peanut shells were transformed into porous carbon with a high surface area through a simple ZnCl2-molten salt synthesis process.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 854 ◽  
Author(s):  
Hanbo Xiao ◽  
Cheng-an Tao ◽  
Yujiao Li ◽  
Xianzhe Chen ◽  
Jian Huang ◽  
...  

Herein, a facile dopamine assisted one-pot synthesis approach is proposed for the preparation of porous carbon with a specific surface area (SSA) up to 2593 m2/g through the direct pyrolysis of a mixture of glucose, NH4Cl, and dopamine hydrochloride (DAH). The glucose is adopted as the carbon source and foaming agent, NH4Cl is used as the blowing agent, and DAH is served as collaborative carbon precursor as well as the nitrogen source for the first time. The effect of dopamine on the component, structure, and SSA of the as-prepared porous carbon materials are systematically studied. The moderate addition of dopamine, which influences the condensation and polymerization of glucose, matches better with ammonium salt decomposition. The SSA of porous carbon increases first and then decreases with the increasing amount of dopamine. In our case, the porous carbon produced with 5 wt% dopamine (PC-5) achieves the maximum SSA of up to 2593 m2/g. Accordingly, it also shows the greatest electrochemical performance. The PC-5 shows a capacitance of 96.7 F/g calculated from the discharge curve at 1 A/g. It also has a good capacitive rate capacity, the specific capacitance can still maintain 80%, even at a high current density of 10 A/g. Moreover, PC-5 exhibits a good cycling stability of 98.1% capacitive retention after 1000 cycles. The proposed method may show promising prospects for preparing porous carbon materials as advanced energy storage materials, storage, and catalyst supports.


2019 ◽  
Vol 31 (8) ◽  
pp. 1709-1718
Author(s):  
T. Veldevi ◽  
K. Thileep Kumar ◽  
R.A. Kalaivani ◽  
S. Raghu ◽  
A.M. Shanmugharaj

Hierarchical nanostructured graphene–manganese dioxide nanowire (G-MnO2-NW) composites have been prepared by hydrothermal synthesis route using water/1-decanol as the medium. Synthesized materials were analyzed using various characterization tools to corroborate their chemical compositions, structure/morphology and surface area. Electrochemical measurements of the synthesized G-MnO2-NW electrode materials delivered the highest specific capacity (255 Fg-1), high rate capability and improved cycling stability at 0.5 Ag–1 in 1M sodium sulfate solution and this fact may be attributed to its high surface area and porosity. Moreover, synthesized G-MnO2-NW electrodes displayed better energy and power density, when compared to the MnO2-NW based electrodes.


ACS Omega ◽  
2020 ◽  
Vol 5 (23) ◽  
pp. 13548-13556 ◽  
Author(s):  
Junhua Hou ◽  
Yijian Liu ◽  
Shikai Wen ◽  
Weitao Li ◽  
Riquan Liao ◽  
...  

2020 ◽  
Vol 518 ◽  
pp. 146265 ◽  
Author(s):  
Liu Wan ◽  
Rui Xiao ◽  
Jiaxing Liu ◽  
Yan Zhang ◽  
Jian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document