scholarly journals Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation

2020 ◽  
Vol 19 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Erin E. Berlew ◽  
Ivan A. Kuznetsov ◽  
Keisuke Yamada ◽  
Lukasz J. Bugaj ◽  
Brian Y. Chow

We report the construction of a single-component optogenetic Rac1 (opto-Rac1) to control actin polymerization by dynamic membrane recruitment.

2001 ◽  
Vol 153 (4) ◽  
pp. 795-810 ◽  
Author(s):  
Satoru Funamoto ◽  
Kristina Milan ◽  
Ruedi Meili ◽  
Richard A. Firtel

We show that cells lacking two Dictyostelium class I phosphatidylinositol (PI) 3′ kinases (PI3K and pi3k1/2-null cells) or wild-type cells treated with the PI3K inhibitor LY294002 are unable to properly polarize, are very defective in the temporal, spatial, and quantitative regulation of chemoattractant-mediated filamentous (F)-actin polymerization, and chemotax very slowly. PI3K is thought to produce membrane lipid-binding sites for localization of PH domain–containing proteins. We demonstrate that in response to chemoattractants three PH domain–containing proteins do not localize to the leading edge in pi3k1/2-null cells, and the translocation is blocked in wild-type cells by LY294002. Cells lacking one of these proteins, phdA-null cells, exhibit defects in the level and kinetics of actin polymerization at the leading edge and have chemotaxis phenotypes that are distinct from those described previously for protein kinase B (PKB) (pkbA)-null cells. Phenotypes of PhdA-dominant interfering mutations suggest that PhdA is an adaptor protein that regulates F-actin localization in response to chemoattractants and links PI3K to the control of F-actin polymerization at the leading edge during pseudopod formation. We suggest that PKB and PhdA lie downstream from PI3K and control different downstream effector pathways that are essential for proper chemotaxis.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3078
Author(s):  
Irina A. Guschina ◽  
Natalia Ninkina ◽  
Andrei Roman ◽  
Mikhail V. Pokrovskiy ◽  
Vladimir L. Buchman

Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson’s disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.


2021 ◽  
Author(s):  
Juan Luis Benavente ◽  
Dritan Siliqi ◽  
Lourdes Infantes ◽  
Laura Lagartera ◽  
Alberto Mills ◽  
...  

Cell function requires the maintenance of membrane lipid homeostasis as changes in cellular environment unbalance this equilibrium. The non-vesicular lipid transfer at endoplasmic reticulum (ER) and plasma membrane (PM) contact sites (CS) is central to restore it. Extended synaptotagmins (E-Syts) are ER proteins that play a central role in this process as they act as molecular tethers with PM and as lipid transfer proteins between these organelles. E-Syts are constitutively anchored to the ER through an N-terminal hydrophobic segment and bind to the PM via C-terminal C2 domains. In plants, synaptotagmins (SYTs) are orthologous of E-Syts and regulate the ER-PM communication by the activity of their two C2 domains in response to abiotic stresses. We have combined macromolecular crystallography, small-angle X-ray scattering, structural bioinformatics and biochemical data to analyze the regulation of plant synaptotagmin 1 (SYT1). Our data show that the binding of SYT1 to the PM is regulated by the interaction of the first C2 domain through a Ca2+-dependent lipid binding site and by a site for phosphorylated forms of phosphatidylinositol in such a way that two different molecular signals are integrated in response to stress. In addition, our data show that SYT1 is highly flexible by virtue of up to three hinge points, including one that connects the two C2 domains. This feature provides conformational freedom to SYT1 to define a large and complementary interaction surface with the PM. This structural plasticity, in turn, may facilitate lipid extraction, protein loading and subsequent transfer between PM and ER.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Joseph B Mascarenhas ◽  
Ghassan Mouneimne ◽  
Carol C Gregorio ◽  
Mary E Brown ◽  
Ting Wang ◽  
...  

Ena/VASP like protein, or EVL, is an actin-binding protein that regulates cancer cell lamellipodia protrusive activity and cell motility via an actomyosin contractility-dependent mechanism. The function of EVL in human lung endothelial cell (EC) barrier regulation, especially by the endogenous bioactive lipid mediator sphingosine-1-phosphate (S1P), is largely unknown. In this current study, we demonstrated that EVL is an active component in S1P-mediated EC barrier enhancement and lamellipodia formation. Compared to other focal adhesion (FA) proteins such as paxillin, EVL protein expression is very low in human pulmonary endothelial cells (ECs). S1P (1 μM) challenge stimulates translocation of cytosolic EVL to FAs in ECs, which was attenuated by EVL knockdown (KD) by its selective siRNA. S1P also promoted significant EVL translocation to lamellipodia, further confirmed by tracking translocation of EVL-GFP fusion protein upon S1P stimulation in a time-dependent manner. In addition, S1P-mediated cortical actin filament formation is attenuated by EVL KD, further confirming the function of EVL in S1P-induced lamellipodia formation/cortical actin polymerization. S1P stimulates EVL phosphorylation by tyrosine kinase c-Abl which is attenuated by the c-Abl inhibitor, imatinib. Finally, EVL KD attenuated S1P-mediated EC barrier enhancement and paracellular gap resealing reflected by reduced transendothelial electrical resistance (TER) measurements. These findings confirm a novel role for EVL in human lung vascular barrier enhancement and cytoskeleton rearrangement by S1P.


FEBS Journal ◽  
2019 ◽  
Vol 286 (16) ◽  
pp. 3164-3181 ◽  
Author(s):  
Pierre Santucci ◽  
Nabil Smichi ◽  
Sadia Diomandé ◽  
Isabelle Poncin ◽  
Vanessa Point ◽  
...  

2002 ◽  
Vol 160 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Carsten Brock ◽  
Michael Schaefer ◽  
H. Peter Reusch ◽  
Cornelia Czupalla ◽  
Manuela Michalke ◽  
...  

Receptor-regulated class I phosphoinositide 3-kinases (PI3K) phosphorylate the membrane lipid phosphatidylinositol (PtdIns)-4,5-P2 to PtdIns-3,4,5-P3. This, in turn, recruits and activates cytosolic effectors with PtdIns-3,4,5-P3–binding pleckstrin homology (PH) domains, thereby controlling important cellular functions such as proliferation, survival, or chemotaxis. The class IB p110γ/p101 PI3Kγ is activated by Gβγ on stimulation of G protein–coupled receptors. It is currently unknown whether in living cells Gβγ acts as a membrane anchor or an allosteric activator of PI3Kγ, and which role its noncatalytic p101 subunit plays in its activation by Gβγ. Using GFP-tagged PI3Kγ subunits expressed in HEK cells, we show that Gβγ recruits the enzyme from the cytosol to the membrane by interaction with its p101 subunit. Accordingly, p101 was found to be required for G protein–mediated activation of PI3Kγ in living cells, as assessed by use of GFP-tagged PtdIns-3,4,5-P3–binding PH domains. Furthermore, membrane-targeted p110γ displayed basal enzymatic activity, but was further stimulated by Gβγ, even in the absence of p101. Therefore, we conclude that in vivo, Gβγ activates PI3Kγ by a mechanism assigning specific roles for both PI3Kγ subunits, i.e., membrane recruitment is mediated via the noncatalytic p101 subunit, and direct stimulation of Gβγ with p110γ contributes to activation of PI3Kγ.


Science ◽  
2019 ◽  
Vol 366 (6466) ◽  
pp. 714-723 ◽  
Author(s):  
Neil Vasan ◽  
Pedram Razavi ◽  
Jared L. Johnson ◽  
Hong Shao ◽  
Hardik Shah ◽  
...  

Activating mutations in PIK3CA are frequent in human breast cancer, and phosphoinositide 3-kinase alpha (PI3Kα) inhibitors have been approved for therapy. To characterize determinants of sensitivity to these agents, we analyzed PIK3CA-mutant cancer genomes and observed the presence of multiple PIK3CA mutations in 12 to 15% of breast cancers and other tumor types, most of which (95%) are double mutations. Double PIK3CA mutations are in cis on the same allele and result in increased PI3K activity, enhanced downstream signaling, increased cell proliferation, and tumor growth. The biochemical mechanisms of dual mutations include increased disruption of p110α binding to the inhibitory subunit p85α, which relieves its catalytic inhibition, and increased p110α membrane lipid binding. Double PIK3CA mutations predict increased sensitivity to PI3Kα inhibitors compared with single-hotspot mutations.


2003 ◽  
Vol 23 (6) ◽  
pp. 2151-2161 ◽  
Author(s):  
Jeffrey M. Masuda-Robens ◽  
Sara N. Kutney ◽  
Hongwei Qi ◽  
Margaret M. Chou

ABSTRACT The Rho family GTPases Cdc42 and Rac1 play fundamental roles in transformation and actin remodeling. Here, we demonstrate that the TRE17 oncogene encodes a component of a novel effector pathway for these GTPases. TRE17 coprecipitated specifically with the active forms of Cdc42 and Rac1 in vivo. Furthermore, the subcellular localization of TRE17 was dramatically regulated by these GTPases and mitogens. Under serum-starved conditions, TRE17 localized predominantly to filamentous structures within the cell. Epidermal growth factor (EGF) induced relocalization of TRE17 to the plasma membrane in a Cdc42-/Rac1-dependent manner. Coexpression of activated alleles of Cdc42 or Rac1 also caused complete redistribution of TRE17 to the plasma membrane, where it partially colocalized with the GTPases in filopodia and ruffles, respectively. Membrane recruitment of TRE17 by EGF or the GTPases was dependent on actin polymerization. Finally, we found that a C-terminal truncation mutant of TRE17 induced the accumulation of cortical actin, mimicking the effects of activated Cdc42. Together, these results identify TRE17 as part of a novel effector complex for Cdc42 and Rac1, potentially contributing to their effects on actin remodeling. The present study provides insights into the regulation and cellular function of this previously uncharacterized oncogene.


1998 ◽  
Vol 143 (4) ◽  
pp. 1087-1099 ◽  
Author(s):  
Angeliki Malliri ◽  
Marc Symons ◽  
Robert F. Hennigan ◽  
Adam F.L. Hurlstone ◽  
Richard F. Lamb ◽  
...  

Human squamous cell carcinomas (SCC) frequently express elevated levels of epidermal growth factor receptor (EGFR). EGFR overexpression in SCC-derived cell lines correlates with their ability to invade in an in vitro invasion assay in response to EGF, whereas benign epidermal cells, which express low levels of EGFR, do not invade. EGF-induced invasion of SCC-derived A431 cells is inhibited by sustained expression of the dominant negative mutant of c-Jun, TAM67, suggesting a role for the transcription factor AP-1 (activator protein-1) in regulating invasion. Significantly, we establish that sustained TAM67 expression inhibits growth factor–induced cell motility and the reorganization of the cytoskeleton and cell-shape changes essential for this process: TAM67 expression inhibits EGF-induced membrane ruffling, lamellipodia formation, cortical actin polymerization and cell rounding. Introduction of a dominant negative mutant of Rac and of the Rho inhibitor C3 transferase into A431 cells indicates that EGF-induced membrane ruffling and lamellipodia formation are regulated by Rac, whereas EGF-induced cortical actin polymerization and cell rounding are controlled by Rho. Constitutively activated mutants of Rac or Rho introduced into A431 or A431 cells expressing TAM67 (TA cells) induce equivalent actin cytoskeletal rearrangements, suggesting that the effector pathways downstream of Rac and Rho required for these responses are unimpaired by sustained TAM67 expression. However, EGF-induced translocation of Rac to the cell membrane, which is associated with its activation, is defective in TA cells. Our data establish a novel link between AP-1 activity and EGFR activation of Rac and Rho, which in turn mediate the actin cytoskeletal rearrangements required for cell motility and invasion.


Sign in / Sign up

Export Citation Format

Share Document