Fabrication of magnesium oxide nanoparticles by solvent alteration and their bactericidal applications

2019 ◽  
Vol 7 (26) ◽  
pp. 4141-4152 ◽  
Author(s):  
Proma Bhattacharya ◽  
Sarpras Swain ◽  
Lopamudra Giri ◽  
Sudarsan Neogi

MgO nanoparticles are synthesized using water, ethanol and aqueous CTAB solution. The nanoparticles synthesized in ethanol exhibited smallest size, maximum reactive oxygen species generation and maximum antibacterial ability, and low haemolysis.

2017 ◽  
Vol 11 (2) ◽  
pp. 278-288 ◽  
Author(s):  
Carlos Angelé-Martínez ◽  
Khanh Van T. Nguyen ◽  
Fathima S. Ameer ◽  
Jeffrey N. Anker ◽  
Julia L. Brumaghim

The eff ect of the non-opiate analog of leu-enkephalin (peptide NALE: Phe – D – Ala – Gly – Phe – Leu – Arg) on the reactive oxygen species generation in the heart of albino rats in the early postnatal period was studied. Peptide NALE was administered intraperitoneally in the dose of 100 μ/kg daily from 2 to 6 days of life. Reactive oxygen species generation was assessed by chemiluminescence in the heart homogenates of 7-day-old animals. Decreasing of reactive oxygen species generation nearly by 30 % and an increasing in antioxidant system activity by the 20-27 %, compared with the control parameters, were found. The antioxidant eff ect of peptide NALE is associated with the presence of the amino acid Arg in the structure of the peptide. An analogue of NALE peptide, devoid of Arg (peptide Phe – D – Ala – Gly – Phe – Leu – Gly), had a signifi cant lower antioxidant eff ect. The NO-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in the dose 50 mg/kg, administered with NALE peptide, reduced the severity of the NALE antioxidant eff ect. The results of the study suggest that the pronounced antioxidant eff ect of NALE peptide in the heart of albino rats, at least in part, is due to the interaction with the nitric oxide system.


2020 ◽  
Vol 6 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Seyyed Mohammad Javadi

Background: Rubber vulcanization is a consolidated chemical process to enhance the mechanical properties of the polymeric material by sulfur crosslinking of the polymer chains, such as rubber. Vulcanization Activators are important rubber processing additives that activate sulfur cure and improve the efficiency of sulfur-based cure systems. The most common activator is zinc fatty acid ester that is often formed in-situ by the reaction of fatty acid with zinc oxide. Although zinc is one of the less harmful heavy metals, according to European Council Directive 2004/73/EC, the reduction of zinc level in the environment has become an important task because of its toxic effect on aquatic organisms. : The current study reviews the research achievements in the field of reducing the consumption of micronutrients of ZnO particles based on the use of nanoparticles instead of them in the polymer industry. Among the proposed methods, due to the less environmental effects of magnesium oxide, the use of MgO nanoparticles instead of zinc oxide has also achieved good results. Objective: The aim of this paper is considering suggested different methods on the reduction of using ZnO particles in related industries, the use of ZnO nanoparticles has had better results than its particles. In addition, due to the less environmental effects of magnesium oxide, magnesium oxide nanoparticles can be used instead of micronutrients of zinc oxide. Overall, the results of various investigations show that reducing the diameter of the zinc oxide particles reduces the amount required for curing the rubber and thus reduces its toxic effects. Also, the use of magnesium oxide nanoparticles instead of zinc oxide in different concentrations is investigated.


1993 ◽  
Vol 149 (1) ◽  
pp. 64-67 ◽  
Author(s):  
Donald L. Weese ◽  
Michael L. Peaster ◽  
Kyle K. Himsl ◽  
Gary E. Leach ◽  
Pramod M. Lad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document