scholarly journals Rational design of a stapled JAZ9 peptide inhibiting protein–protein interaction of a plant transcription factor

2021 ◽  
Author(s):  
Kaho Suzuki ◽  
Yousuke Takaoka ◽  
Minoru Ueda

A rationally designed stapled JAZ peptide selectively inhibited MYCs, master-regulators of the jasmonate signaling in Arabidopsis thaliana. It is proposed as a novel chemical tool for the analysis of MYC related jasmonate signaling.


2021 ◽  
Author(s):  
Kaho Suzuki ◽  
Yousuke Takaoka ◽  
Minoru Ueda

Correction for ‘Rational design of a stapled JAZ9 peptide inhibiting protein–protein interaction of a plant transcription factor’ by Kaho Suzuki et al., RSC Chem. Biol., 2021, DOI: 10.1039/d0cb00204f.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ching-Yu Shen ◽  
You-Yi Chen ◽  
Ke-Wei Liu ◽  
Hsiang-Chia Lu ◽  
Song-Bin Chang ◽  
...  

AbstractThe ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.





2007 ◽  
Vol 21 (4) ◽  
pp. 1177-1188 ◽  
Author(s):  
Ana C. Liberman ◽  
Damian Refojo ◽  
Jimena Druker ◽  
Marta Toscano ◽  
Theo Rein ◽  
...  


2016 ◽  
Vol 92 (1-2) ◽  
pp. 105-116 ◽  
Author(s):  
Hong Li ◽  
Shiping Yang ◽  
Chuan Wang ◽  
Yuan Zhou ◽  
Ziding Zhang


RNA ◽  
2010 ◽  
Vol 16 (3) ◽  
pp. 474-481 ◽  
Author(s):  
H. Qin ◽  
F. Chen ◽  
X. Huan ◽  
S. Machida ◽  
J. Song ◽  
...  


2016 ◽  
Vol 35 (8-9) ◽  
pp. 460-473 ◽  
Author(s):  
Laura De Luca ◽  
Fatima E. Agharbaoui ◽  
Rosaria Gitto ◽  
Maria Rosa Buemi ◽  
Frauke Christ ◽  
...  


2021 ◽  
Author(s):  
Tatiana de Souza Moraes ◽  
Sam W. van Es ◽  
Inmaculada Hernández-Pinzón ◽  
Gwendolyn K. Kirschner ◽  
Froukje van der Wal ◽  
...  

AbstractBarley is the fourth largest cereal crop grown worldwide, and essential for food and feed production. Phenotypically, the barley spike, which is unbranched, occurs in two main architectural shapes: two-rowed or six-rowed. In the 6-rowed cultivars, all three florets of the triple floret meristem develop into seeds while in 2-rowed lines only the central floret forms a seed. VRS5(HvTB1), act as inhibitor of lateral seed outgrowth and vrs5(hvtb1) mutants display a six-rowed spike architecture. VRS5(HvTB1) is a member of the TCP transcription factor (TF) family, which often form protein-protein interactions with other transcriptional regulators to modulate the expression of their target genes.Despite the key role of VRS5(HvTB1) in regulating barley plant architecture, there is hardly any knowledge on its molecular mode-of-action. We performed an extensive phylogenetic analysis of the TCP transcription factor family, followed by an in-vitro protein-protein interaction study using yeast-two-hybrid. Our analysis shows that VRS5(HvTB1) has a diverse interaction capacity, interacting with class II TCP’s, NF-Y TF, but also chromatin modellers. Further analysis of the interaction capacity of VRS5(HvTB1) with other TCP TFs shows that VRS5(HvTB1) preferably interacts with other class II TCP TFs within the TB1 clade. One of these interactors, encoded by HvTB2, shows a similar expression pattern when compared to VRS5(HvTB1). Haplotype analysis of HvTB2 suggest that this gene is highly conserved and shows hardly any variation in cultivars or wild barley. Induced mutations in HvTB2 trough CRISPR-CAS9 mutagenesis in cv. Golden Promise resulted in barley plants that lost their characteristic unbranched spike architecture. hvtb2 mutants exhibited branches arising at the main spike, suggesting that, similar to VRS5(HvTB1), HvTB2 act as inhibitor of branching. Taken together, our protein-protein interaction studies of VRS5(HvTB1) resulted in the identification of HvTB2, another key regulator of spike architecture in barley. Understanding the molecular network, including protein-protein interactions, of key regulators of plant architecture such as VRS5(HvTB1) provide new routes towards the identification of other key regulators of plant architecture in barley.Author summaryTranscriptional regulation is one of the basic molecular processes that drives plant growth and development. The key TCP transcriptional regulator TEOSINTE BRANCHED 1 (TB1) is one of these key regulators that has been targeted during domestication of several crops for its role as modulator of branching. Also in barley, a key cereal crop, HvTB1 (also referred to as VRS5), inhibits the outgrowth or side shoots, or tillers, and seeds. Despite its key role in barley development, there is hardly any knowledge on the molecular network that is utilized by VRS5(HvTB1). Transcriptional regulators form homo- and heterodimers to regulate the expression of their downstream targets. Here, we performed an extensive phylogenetic analysis of TCP transcription factors (TFs) in barley, followed by protein-protein interaction studies of VRS5(HvTB1). Our analysis indicates, that VRS5(HvTB1) has a diverse capacity of interacting with class II TCPs, NF-Y TF, but also chromatin modellers. Induced mutagenesis trough CRISPR-CAS mutagenesis of one of the putative VRS5(HvTB1) interactors, HvTB2, resulted in barley plants with branched spikes. This shows that insight into the VRS5(HvTB1) interactome, followed by detailed functional analysis of potential interactors is essential to truly understand how TCPs modulate plant architecture. The study presented here provides a first step to underpin the protein-protein interactome of VRS5(HvTB1) and identify other, yet unknown, key regulators of barley plant architecture.





Sign in / Sign up

Export Citation Format

Share Document