Supramolecular architecture and electrical conductivity in organic semiconducting thin films

2020 ◽  
Vol 22 (24) ◽  
pp. 13554-13562 ◽  
Author(s):  
José Diego Fernandes ◽  
Mateus D. Maximino ◽  
Maria Luisa Braunger ◽  
Matheus S. Pereira ◽  
Clarissa de Almeida Olivati ◽  
...  

Organic thin films supramolecular architecture plays an essential factor in the performance of optical and electronic organic devices.

Quimica Hoy ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 4
Author(s):  
Sarah Messina ◽  
Paz Hernández ◽  
Yolanda Peña

In this paper we present a method to produce polycrystalline CuSbS2 thin ?lms through a solid-state reaction at 350 ºC and 400 ºC involving thin ?lm multilayer of Sb2S3 -CuS or Cu2-xSe by chemical bath deposition technique. The formation of the ternary compound was confirmed by X-ray di?raction (XRD). A direct optical band gap of approx. 1.57 eV anda p-type electrical conductivity of 10-3 (Ω•cm)-1 were measured. These optoelectronic characteristics show perspective for the use of CuSbS, as a suitable absorber material in photovoltaic applications.


2009 ◽  
Vol 1197 ◽  
Author(s):  
Masakazu Nakamura ◽  
Atsushi Hoshi ◽  
Masatoshi Sakai ◽  
Kazuhiro Kudo

AbstractOrganic conducting and semiconducting materials are promising as thermoelectric conversion materials in flexible and wearable electronics because they have large Seebeck coefficients and small thermal conductivities. Since there have been only a limited number of studies on the thermoelectricity of organic materials to date, precise evaluation of Seebeck coefficient and electrical conductivity of various organic conducting/semiconducting thin films is important to examine what kind of material is the most effectual. To carry out such experiments, a specially designed instrument for organic thin films has been developed. Its ability to measure Seebeck coefficients of highly resistive materials was confirmed and Seebeck coefficients and power factors of several typical organic functional materials were preliminary evaluated.


1992 ◽  
pp. 547-551
Author(s):  
Takeshi YAMAUCHI ◽  
Yoshiharu KAGAMI ◽  
Yoshihito OSADA ◽  
Gu-Bum PARK ◽  
Duck-Chool LEE

Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


Sign in / Sign up

Export Citation Format

Share Document