Macromolecular structures of biological specimens are not obscured by controlled osmium impregnation

Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.

1990 ◽  
Vol 206 ◽  
Author(s):  
A. Ramachandra ◽  
M. Vaziri ◽  
R.P. Andres

ABSTRACTGold clusters (diam. = 1.0 ± .5 nm) are prepared in a gas aggregation source (MECS), expanded into a vacuum chamber to form a neutral cluster beam, and deposited at low impact velocity on room temperature substrates. When several monolayers of these clusters are deposited on clean substrates (nitrocellulose, glass, mica, NaCl), they form smooth ultra-thin films. These cluster-assembled films appear to be similar in quality to those produced by the Takagi-Yamada ion cluster beam process. They exhibit finite electrical conductivity at thicknesses much smaller than is the case with atomically evaporated films. They are extremely uniform and smooth with a surface height that typically varies less than 1 nm across the entire film.


2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


2021 ◽  
Vol 9 (13) ◽  
pp. 4522-4531
Author(s):  
Chao Yun ◽  
Matthew Webb ◽  
Weiwei Li ◽  
Rui Wu ◽  
Ming Xiao ◽  
...  

Interfacial resistive switching and composition-tunable RLRS are realized in ionically conducting Na0.5Bi0.5TiO3 thin films, allowing optimised ON/OFF ratio (>104) to be achieved with low growth temperature (600 °C) and low thickness (<20 nm).


2021 ◽  
Vol 1758 (1) ◽  
pp. 012005
Author(s):  
G S Burkhanov ◽  
S A Lachenkov ◽  
M A Kononov ◽  
A U Bashlakov ◽  
D V Prosvirnin

RSC Advances ◽  
2015 ◽  
Vol 5 (94) ◽  
pp. 76783-76787 ◽  
Author(s):  
H. L. Wang ◽  
X. K. Ning ◽  
Z. J. Wang

Au–LaNiO3 (Au–LNO) nanocomposite films with 3.84 at% Au were firstly fabricated by one-step chemical solution deposition (CSD), and their electrical properties were investigated.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


Sign in / Sign up

Export Citation Format

Share Document