Gate tunable self-powered few-layer black phosphorus broadband photodetector

2021 ◽  
Vol 23 (1) ◽  
pp. 399-404
Author(s):  
Xiaofei Guo ◽  
Liwen Zhang ◽  
Jun Chen ◽  
Xiaohong Zheng ◽  
Lei Zhang

Due to the giant Stark effect in few-layer black phosphorus (BP), a self-powered and gate-controlled pure few-layer BP based photodetector device is proposed, which can cover the photodetection range from mid-infrared range (MIR) to far-infrared range (FIR).

Author(s):  
H. Kaneda ◽  
D. Ishihara ◽  
S. Oyabu ◽  
M. Yamagishi ◽  
T. Wada ◽  
...  

AbstractThe mid-infrared range contains many spectral features associated with large molecules and dust grains such as polycyclic aromatic hydrocarbons and silicates. These are usually very strong compared to fine-structure gas lines, and thus valuable in studying the spectral properties of faint distant galaxies. In this paper, we evaluate the capability of low-resolution mid-infrared spectroscopic surveys of galaxies that could be performed by SPICA. The surveys are designed to address the question how star formation and black hole accretion activities evolved over cosmic time through spectral diagnostics of the physical conditions of the interstellar/circumnuclear media in galaxies. On the basis of results obtained with Herschel far-infrared photometric surveys of distant galaxies and Spitzer and AKARI near- to mid-infrared spectroscopic observations of nearby galaxies, we estimate the numbers of the galaxies at redshift z > 0.5, which are expected to be detected in the polycyclic aromatic hydrocarbon features or dust continuum by a wide (10 deg2) or deep (1 deg2) blind survey, both for a given observation time of 600 h. As by-products of the wide blind survey, we also expect to detect debris disks, through the mid-infrared excess above the photospheric emission of nearby main-sequence stars, and we estimate their number. We demonstrate that the SPICA mid-infrared surveys will efficiently provide us with unprecedentedly large spectral samples, which can be studied further in the far-infrared with SPICA.


2010 ◽  
Vol 49 (14) ◽  
pp. 2606 ◽  
Author(s):  
Steven T. Yang ◽  
Manyalibo J. Matthews ◽  
Selim Elhadj ◽  
Diane Cooke ◽  
Gabriel M. Guss ◽  
...  

2D Materials ◽  
2016 ◽  
Vol 3 (4) ◽  
pp. 041006 ◽  
Author(s):  
Ryan J Suess ◽  
Edward Leong ◽  
Joseph L Garrett ◽  
Tong Zhou ◽  
Reza Salem ◽  
...  

JETP Letters ◽  
2018 ◽  
Vol 108 (5) ◽  
pp. 329-334 ◽  
Author(s):  
L. S. Bovkun ◽  
A. V. Ikonnikov ◽  
V. Ya. Aleshkin ◽  
S. S. Krishtopenko ◽  
N. N. Mikhailov ◽  
...  

2017 ◽  
Vol 56 (12) ◽  
pp. 3470
Author(s):  
Carlos Villaseñor-Mora ◽  
Francisco J. Gantes-Nunez ◽  
Arturo Gonzalez-Vega ◽  
Victor H. Hernandez-Gonzalez

2020 ◽  
Vol 639 ◽  
pp. A141 ◽  
Author(s):  
K. S. Olsen ◽  
F. Lefèvre ◽  
F. Montmessin ◽  
A. Trokhimovskiy ◽  
L. Baggio ◽  
...  

Aims. The ExoMars Trace Gas Orbiter was sent to Mars in March 2016 to search for trace gases diagnostic of active geological or biogenic processes. Methods. We report the first observation of the spectral features of Martian ozone (O3) in the mid-infrared range using the Atmospheric Chemistry Suite Mid-InfaRed (MIR) channel, a cross-dispersion spectrometer operating in solar occultation mode with the finest spectral resolution of any remote sensing mission to Mars. Results. Observations of ozone were made at high northern latitudes (>65°N) prior to the onset of the 2018 global dust storm (Ls = 163–193°). During this fast transition phase between summer and winter ozone distribution, the O3 volume mixing ratio observed is 100–200 ppbv near 20 km. These amounts are consistent with past observations made at the edge of the southern polar vortex in the ultraviolet range. The observed spectral signature of ozone at 3000–3060 cm−1 directly overlaps with the spectral range of the methane (CH4) ν3 vibration-rotation band, and it, along with a newly discovered CO2 band in the same region, may interfere with measurements of methane abundance.


Sign in / Sign up

Export Citation Format

Share Document