Soft X-ray emission spectroscopy for electronic state of water molecules influenced by plasma-treated multi-wall carbon nanotubes

Author(s):  
Noritaka Sakakibara ◽  
Kenichi Inoue ◽  
Shion Takahashi ◽  
Taku Goto ◽  
Tsuyohito Ito ◽  
...  

In this study, soft X-ray emission spectroscopy of an aqueous colloidal dispersion of multi-wall carbon nanotubes modified via plasma process in an aqueous solution was performed for investigating the electronic...

2008 ◽  
Vol 48 (supplement) ◽  
pp. S144-S145
Author(s):  
Yuka Horikawa ◽  
Takashi Tokushima ◽  
Hidemi Arai ◽  
Yoshihisa Harada ◽  
Atsunari Hiraya ◽  
...  

2010 ◽  
Vol 6 (1) ◽  
pp. 891-896
Author(s):  
Manel Halouani ◽  
M. Dammak ◽  
N. Audebrand ◽  
L. Ktari

One nickel 1,4-cyclohexanedicarboxylate coordination polymers, Ni2 [(O10C6H4)(COO)2].2H2O  (I), was hydrothermally synthesized from an aqueous solution of Ni (NO3)2.6H2O, (1,4-CDC) (1,4-CDC = 1,4-cyclohexanedicarboxylic acid) and tetramethylammonium nitrate. Compound (I) crystallizes in the monoclinic system with the C2/m space group. The unit cell parameters are a = 20.1160 (16) Å, b = 9.9387 (10) Å, c = 6.3672 (6) Å, β = 97.007 (3) (°), V= 1263.5 (2) (Å3) and Dx= 1.751g/cm3. The refinement converged into R= 0.036 and RW = 0.092. The structure, determined by single crystal X-ray diffraction, consists of two nickel atoms Ni (1) and Ni (2). Lots of ways of which is surrounded by six oxygen atoms, a carboxyl group and two water molecules.


2018 ◽  
Vol 20 (36) ◽  
pp. 23214-23221 ◽  
Author(s):  
Y. Horikawa ◽  
T. Tokushima ◽  
O. Takahashi ◽  
Y. Harada ◽  
A. Hiraya ◽  
...  

The valence electronic structures of the amino acid glycine in aqueous solution were investigated in detail through X-ray emission spectroscopy at O 1s excitation under selective excitation conditions of the CO site in the carboxyl group.


2018 ◽  
Vol 54 ◽  
pp. 127-135
Author(s):  
Wen Zhao ◽  
Wen Cai Wang ◽  
Yong Lai Lu ◽  
Li Qun Zhang

Carbon nanotubes/alumina (CNTs/Al2O3) nanocomposites were prepared by the poly (dopamine) assisted chemical liquid phase deposition (CLPD). The poly (dopamine) layers were firstly coated on the CNTs surface uniformly by the self-oxidative polymerization of dopamine in mild aqueous solution and then the Al2O3 nanoparticles formed on the poly (dopamine) coated CNTs surface by the CLPD. The hydrophilic poly (dopamine) layers on the CNTs surface can improve the dispersion of CNTs in aqueous solution. Moreover, it can be used as a key linker between the CNTs and Al2O3 because of the nitrogen-containing group in poly (dopamine) could coordinate with Al3+ ions. The as-prepared poly (dopamine) coated CNTs and CNTs/Al2O3 nanohybrids were characterized by X-ray photoelectron spectroscopy (XPS), X-radial diffractometer (XRD) and high resolution transmission electron microscopy (HRTEM). These results showed that the poly (dopamine) layers were coated on the surface of CNTs uniformly, and the Al2O3 nanoparticles embellished with the poly (dopamine) coated CNTs surface. Compared with pristine NR composites, the thermal conductivity of the as-prepared NR/CNTs@Al2O3 composites increased 17%.


2016 ◽  
Vol 859 ◽  
pp. 75-78
Author(s):  
Chang Hee Lee ◽  
Chang Su Kim ◽  
Yun Taek Jeong ◽  
Jun Hwan Kim ◽  
Soon Ki Jeong ◽  
...  

We investigated the electrochemical behavior and properties of multi-wall carbon nanotubes (MWCNTs) as a novel negative electrode for calcium ion batteries during charging and discharging. The second charge and discharge capacities were ~63 and ~43 mAh g–1 in propylene carbonate-based electrolyte and ~86 and ~60 mAh g–1 in ethylene carbonate-based electrolyte, respectively. X-ray diffraction analysis results showed that the inter-layer distance of the MWCNTs was increased after charging, indicating that calcium ions were intercalated into the MWCNT graphitic sheets during the charging. The electrochemical performance of the MWCNT electrode was improved by using ball milling to introduce defects.


2013 ◽  
Vol 67 (8) ◽  
Author(s):  
Elena Tomšík ◽  
Zuzana Morávková ◽  
Jaroslav Stejskal ◽  
Miroslava Trchová ◽  
Petr Šálek ◽  
...  

AbstractPolyaniline coating was deposited on the surface of multi-wall carbon nanotubes of Russian and Taiwanese origin in situ during the polymerization of aniline. The deposited polyaniline film was subsequently carbonized under an inert atmosphere at various temperatures to produce coaxial coating of the carbon nanotubes with nitrogen-containing carbon. The new materials were investigated by infrared and Raman spectroscopies, which demonstrated the conversion of the polyaniline coating to a carbonized structure. X-ray photoelectron spectroscopy proved that the carbonized overlayer contains nitrogen atoms in various covalent bonding states. Transmission electron microscopy confirmed the coaxial structure of the composites. The Brunauer-Emmett-Teller method was used to estimate the specific surface area, the highest being 272 m2 g−1. The conductivity of 0.9–16 S cm−1 was measured by the four-point method, and it was only a little affected by the carbonization of the polyaniline coating.


Sign in / Sign up

Export Citation Format

Share Document