scholarly journals Atomistic simulation studies of ionic cyanine dyes: self-assembly and aggregate formation in aqueous solution

Author(s):  
Gary Yu ◽  
Martin Walker ◽  
Mark Richard Wilson

Cyanine dyes are known to form large-scale aggregates of various morphologies via spontaneous self-assembly in aqueous solution, akin to chromonic liquid crystals. Atomistic molecular dynamics simulations have been performed on...

Soft Matter ◽  
2015 ◽  
Vol 11 (4) ◽  
pp. 680-691 ◽  
Author(s):  
Anna Akinshina ◽  
Martin Walker ◽  
Mark R. Wilson ◽  
Gordon J. T. Tiddy ◽  
Andrew J. Masters ◽  
...  

Molecular dynamics simulations of non-ionic triphenylene-based chromonic liquid crystal molecules demonstrate self-assembly of the molecules into stacks and “quasi-isodesmic” aggregation behaviour.


Soft Matter ◽  
2019 ◽  
Vol 15 (46) ◽  
pp. 9437-9451 ◽  
Author(s):  
Pedro A. Sánchez ◽  
Martin Vögele ◽  
Jens Smiatek ◽  
Baofu Qiao ◽  
Marcello Sega ◽  
...  

By employing large-scale molecular dynamics simulations of atomistically resolved oligoelectrolytes in aqueous solutions, we study in detail the first four layer-by-layer deposition cycles of a PDADMAC/PSS oligoelectrolyte multilayer.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7117
Author(s):  
Li Wang ◽  
Rui Xu ◽  
Ruohua Liu ◽  
Peng Ge ◽  
Wei Sun ◽  
...  

The self-assembly behaviors of sodium oleate (NaOL), dodecylamine (DDA), and their mixtures in aqueous solution were systematically investigated by large-scale molecular dynamics simulations, respectively. The interaction mechanisms between the surfactants, as well as the surfactants and solvent, were revealed via the radial distribution function (RDF), cluster size, solvent-accessible surface area (SASA), hydrogen bond, and non-bond interaction energy. Results showed that the molecules more easily formed aggregates in mixed systems compared to pure systems, indicating higher surface activity. The SASA values of DDA and NaOL decreased significantly after mixing, indicating a tighter aggregation of the mixed surfactants. The RDF results indicated that DDA and NaOL strongly interacted with each other, especially in the mixed system with a 1:1 molar ratio. Compared to van der Waals interactions, electrostatic interactions between the surfactant molecules were the main contributors to the improved aggregation in the mixed systems. Besides, hydrogen bonds were found between NaOL and DDA in the mixed systems. Therefore, the aggregates in the mixed systems were much more compact in comparison with pure systems, which contributed to the reduction of the repulsive force between same molecules. These findings indicated that the mixed NaOL/DDA surfactants had a great potential in application of mineral flotation.


Author(s):  
Shingo Urata ◽  
An-Tsung Kuo ◽  
Hidenobu Murofushi

A flexible aerogel polymerized from methyltrimethoxysilane (MTMS) shows great promise as a high-performance insulator owing to its substantially low thermal conductivity and mechanical flexibility, attributed to its porous microstructure and...


Soft Matter ◽  
2018 ◽  
Vol 14 (16) ◽  
pp. 3115-3126 ◽  
Author(s):  
Małgorzata Borówko ◽  
Wojciech Rżysko ◽  
Stefan Sokołowski ◽  
Tomasz Staszewski

We report the results of large scale molecular dynamics simulations conducted for sparsely grafted disks in two-dimensional systems.


Author(s):  
Łukasz Piotr Baran ◽  
Wojciech Rżysko ◽  
Dariusz Tarasewicz

In this study we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of...


Sign in / Sign up

Export Citation Format

Share Document