scholarly journals Total oxidation of methane over Pd/Al2O3 at pressures from 1 to 10 atm

2020 ◽  
Vol 10 (16) ◽  
pp. 5480-5486
Author(s):  
Carl-Robert Florén ◽  
Cansunur Demirci ◽  
Per-Anders Carlsson ◽  
Derek Creaser ◽  
Magnus Skoglundh

The kinetics of total methane oxidation over a 0.15 wt% Pd/Al2O3 monolith catalyst has been measured during temperature programmed methane oxidation experiments at total pressures from 1 to 10 atm and compared with multiscale simulations.

2014 ◽  
Vol 70 (a1) ◽  
pp. C130-C130
Author(s):  
Rebeca Bacani ◽  
Márcia Fantini ◽  
Tereza Martins ◽  
Susana Larrondo ◽  
Diego Lamas

Zirconia-ceria solid-solutions are extensively used as promoters for three-way catalysts, in addition, these materials can be used as anodes in solid oxide fuel cells (SOFCs) operated with hydrocarbons. The structural features of ZrO2-CeO2 materials in combination with oxygen storage/release capacity (OSC) are crucial for various catalytic reactions. The direct use of hydrocarbons as fuel for the SOFC (instead of pure H2), without the necessity of reforming and purification reactors can improve global efficiency of the system. The samples preparation method was developed using Zr and Ce chloride precursors, HCl aqueous solution, Pluronic P123, NH4OH and a Teflon autoclave. The samples were dried and calcined, until 540°C. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)×6H2O, calcinated in air until 350°C for 2 hours. In-situ XANES experiments are capable to evaluate the reduction/oxidation potencial of Ni and Ce species in ZrO2-CeO2/Ni samples during partial/total methane oxidation and reduction reactions with H2. The experiments at the Ni K-edge/Ce L3-edge were collected at the LNLS D06A-DXAS beam line in transmission mode, using a Si(111) monochromator and a CCD camera as detector. The data were acquired during a series of temperature programmed reduction steps (TPR), under a 5% H2/He until 600°C, and mixtures of 20%CH4:5%O2/He with 2:1, 1:1 and 1:2 ratios. After each process with CH4 and O2, a TPR procedure was performed in order to evaluate the reduction capacity of the sample after reactions with CH4. The results demonstrated that NiO embedded in the porous ZrO2-CeO2 matrix, reduces at lower temperatures than standard NiO, measured in the same conditions, revealing that the mesoporous support improves the reduction of impregnated NiO. For both edges, there was formation of H2 during partial methane oxidation at 600°C. The total oxidation of methane was observed in lower temperatures (500°C). These results reveal that a high ceria content (90%) could be a great candidate for the SOFC anode.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 427
Author(s):  
Marius Stoian ◽  
Vincent Rogé ◽  
Liliana Lazar ◽  
Thomas Maurer ◽  
Jacques C. Védrine ◽  
...  

Methane, discovered in 1766 by Alessandro Volta, is an attractive energy source because of its high heat of combustion per mole of carbon dioxide. However, methane is the most abundant hydrocarbon in the atmosphere and is an important greenhouse gas, with a 21-fold greater relative radiative effectiveness than CO2 on a per-molecule basis. To avoid or limit the formation of pollutants that are dangerous for both human health and the atmospheric environment, the catalytic combustion of methane appears to be one of the most promising alternatives to thermal combustion. Total oxidation of methane, which is environmentally friendly at much lower temperatures, is believed to be an efficient and economically feasible way to eliminate pollutants. This work presents a literature review, a statu quo, on catalytic methane oxidation on transition metal oxide-modified ceria catalysts (MOx/CeO2). Methane was used for this study since it is of great interest as a model compound for understanding the mechanisms of oxidation and catalytic combustion on metal oxides. The objective was to evaluate the conceptual ideas of oxygen vacancy formation through doping to increase the catalytic activity for methane oxidation over CeO2. Oxygen vacancies were created through the formation of solid solutions, and their catalytic activities were compared to the catalytic activity of an undoped CeO2 sample. The reaction conditions, the type of catalysts, the morphology and crystallographic facets exposing the role of oxygen vacancies, the deactivation mechanism, the stability of the catalysts, the reaction mechanism and kinetic characteristics are summarized.


1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


Author(s):  
Tran Thi Thu Huyen ◽  
Dang Thi Minh Hue ◽  
Nguyen Thi Tuyet Mai ◽  
Tran Thi Luyen ◽  
Nguyen Thi Lan

Gases of m-xylene is one of the popurlar toxic pollutants in the exhaust gases, it is emitted into the environment from factories and engines because the fuel in the engine does not burn completely. The best solution in order to remove this toxic gases of m-xylene to protect the environment is transforming them completely into CO2 and H2O by catalysts. Perovskite of LaMnO3 is one of the catalysts that was synthesized and studied the catalytic properties in total oxidation of m-xylene in our previous report. Obtained results showed that the LaMnO3 perovskite has good catalytic characterizations such as large surface area and the amount of α-oxygen adsorbed on the catalyst is large too. So, it exhibits a good catalytic activity in total oxidation of m-xylene at relatively low reaction temperature. In present work, the reaction order  and kinetics of this reaction are determined. The obtained results demonstrated that the reaction order value with respect to m-xylene is equal to about 1, to oxygene is proximately equal to 0 and the order of reaction is equal to about 1. Based on reaction order data, it was thought that the pathway of m-xylene oxidation by air oxygen  over LaMnO3 may be followed through which the Langmuir - Hinshelwood mechanism. Keywords Catalyst, perovskite, oxidation, m-xylene, kinetics References [1] Penã M.A and Fierro J.L.G (2001), << Chemical Stuctures and Performance of Perovskite Oxide>>, Chem. Rev, 101, pp 1981-2018. [2] Seiyama T., Yamazoe N. and Eguchi K. (1985), <<Characterization and Activity of some Mixed Metal Oxide Catalysts>>, Ind. Eng. Chem. Prod. Res. Dev., 24, pp. 19-27.[3] [3] Van Santen R. A., Neurock M. (2006), Molecular Heterogeneous catalysis, Wiley – VCH, pp.62-244. [4] Petrovics, Terlecki - Baricevic A., Karanovic Lj., Kirilov - Stefanov P. , Zdujic M., Dondur V., Paneva D., Mitov I., Rakic V. (2008), <<LaMO3 (M = Mg, Ti, Fe) perovskite type oxides : Preparation, Characterization and Catalytic Properties in Methane deep Oxidation>>, Appl. Catal. B, Env., 79, pp. 186-198. [5] Spinicci R., Tofanari A., Faticanti M., Pettiti I. and Porta P. (2001), <<Hexane Total Oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides>>, J. Mole. Catal., 176, pp. 247-252. [6] Trần Thị Thu Huyền, Nguyễn Thị Minh Hiền, Nguyễn Hữu Phú (2006), <<Study on the preparation of perovskite oxides La1-xSrxMnO3 (x = 0; 0,3; 0,5) by sol - gel citrate method and their catalytic activity for m-xylene toltal oxidation>>, Hội nghị xúc tác và hấp phụ toàn quốc lần thứ IV, Tp. Hồ Chí Minh, Tr. 477-482.[7] Trần Thị Thu Huyền, Nguyễn Thị Minh Hiền, Nguyễn Hữu Phú (2009), <<Nghiên cứu động học của phản ứng oxi hóa hoàn toàn m-xylen trên các xúc tác perovskit LaMnO3 và La0,7A0,3MnO3 (A = Sr, Ca, Mg)>>, Tạp chí Hóa học, T.47 (6A), Tr 132-136.[8] Geoffrey C. Bond, Catherine Louis, David T. Thompson (2006), <<Catalysis by Gold>>, Catalytic Science Series-Vol.6.


2020 ◽  
Vol 15 (2) ◽  
pp. 490-500
Author(s):  
Neha Neha ◽  
Ram Prasad ◽  
Satya Vir Singh

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved 


Author(s):  
Songmei Sun ◽  
Alexandra Barnes ◽  
Xiaoxiao Gong ◽  
Richard Lewis ◽  
Nicholas F. Dummer ◽  
...  

Selective partial oxidation of methane to methanol under ambient conditions is a great challenge in chemistry. Iron modified ZSM-5 catalysts are shown to be effective for this reaction using H2O2...


Sign in / Sign up

Export Citation Format

Share Document