Electrocatalytic Syngas Generation with a Redox Non-Innocent Cobalt 2-Phosphinobenzenethiolate Complex

2021 ◽  
Author(s):  
Nicholas M Orchanian ◽  
Lorena E Hong ◽  
David A Velazquez ◽  
Smaranda C Marinescu

A cobalt complex supported by the 2-(diisopropylphosphaneyl)benzenethiol ligand was synthesized and its electronic structure and reactivity were explored. X-ray diffraction studies indicate a square planar geometry around the cobalt center...

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 476 ◽  
Author(s):  
Xuan-Dien Luong ◽  
Xuan-Truong Nguyen

A [O,N] bidentate π-expanded ligand system, (E)-1-(n-octylimino)methylpyren-2-ol (2), was newly synthesized via a six-step synthesis from pyrene. The ligand 2 reacts with [PtCl2(PhCN)2] in chlorobenzene and the presence of a base at reflux for 2 h under the formation of (2(Pt)) complex with a yield of 70%. The molecular structure of (2(Pt)), studied by common spectroscopic methods and X-ray diffraction, shows a square planar geometry with a trans-configuration of the ligands. The molecular structure, absorption spectra, electrochemical properties, and phosphorescence characteristics of the (2(Pt)) complex are discussed, emphasizing the comparison with those of the previously reported Pt complex (1(Pt)) containing the isomeric ligands of 2, (E)-2-(n-octylimino)methylpyren-1-ol. The DFT calculations of the two Pt complexes are carried out and exhibit a clear explanation of the relationship between their physico-chemical characteristics.


1992 ◽  
Vol 47 (4) ◽  
pp. 517-525 ◽  
Author(s):  
Thomas G. Meyer ◽  
Peter G. Jones ◽  
Reinhard Schmutzler

A new synthesis for 2-chloro-1,3,5-trimethyl-4,6-dioxo-1,3,5,2λ3-triazaphosphinane (1) is described. Chlorine-fluorine exchange in 1 by means of sodium fluoride in acetonitrile in the presence of catalytic amounts of a crown ether furnished 2-fluoro-1,3,5-trimethyl-4,6-dioxo-1,3,5,2λ3-triazaphosphinane (2). The synthesis of the bromine and iodine analogues, 3 and 4, by metathesis of 1 with the appropriate trimethylsilyl halides, Me3SiBr and Me3SiI, respectively, is also described. The syntheses of an iron(0)tetracarbonyl complex (5) and of a dichloroplatinum( II) complex (6) are reported. A single crystal X-ray diffraction study was conducted on 6. [P21/c, a = 1161.3(3), b = 1423.2(3), c = 1247.7(3) pm, β = 109.42(2)°, R = 0.028], There are deviations from ideal square planar geometry at platinum. The heterocycles display a flattened boat conformation. A Staudinger reaction of 1 with Me3SiN3 led to the formation of a substituted cyclotriphosphazene.


2010 ◽  
Vol 428-429 ◽  
pp. 140-143
Author(s):  
Chung Jung Chen ◽  
Chung K. Lai

A new type of 3,3'-(2-hydroxypropane-1,3-diyl) bis(azan-1-yl-1-ylidene)bis(2-(4-alkoxy phenyl)prop-1-en-1-ol) and their copper complexes were prepared and mesomorphic properties characterized. The mesomorphic properties of these copper complexes were studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and powder X-ray diffraction. X-ray structural crystallographic analysis showed that these bimetallic compounds have two copper centers coordinated with central square planar geometry. These molecules all have total two 1a or five alkoxy sidechains 1b appended around the central core. The mesomorphic behavior exhibited was found to be dependent on the sidechain density. All compounds in 1a exhibited smectic mesophases, however, compounds in 1b exhibited hexagonal columnar phases (Colh), which were characterized by optical textures and confirmed by powder x-ray diffraction.


2014 ◽  
Vol 70 (3) ◽  
pp. 260-266 ◽  
Author(s):  
Jeanette A. Krause ◽  
Daoli Zhao ◽  
Sayandev Chatterjee ◽  
Roland Falcon ◽  
Kristen Stoltz ◽  
...  

Different salts of the 2-phenyl-1,10-phenanthrolin-1-ium cation, (pnpH)+, are obtained by reacting 2-phenyl-1,10-phenanthroline (pnp), C18H12N2, (I), with a variety of anions, such as hexafluoridophosphate, C18H13N2+·PF6−, (II), trifluoromethanesulfonate, C18H13N2+·CF3SO3−, (III), tetrachloridoaurate, (C18H13N2)[AuCl4], (IV), and bromide (as the dihydrate), C18H13N2+·Br−·2H2O, (V). Compound (I) crystallizes withZ′ = 2, with both independent molecules adopting a coplanar conformation. In (II)–(IV), a hydrogen bond exists between the cation and anion, while one of the lattice water molecules serves as a hydrogen-bonded bridge between the cation and anion in (V). Reaction of (I) with HAuCl4gives the salt complex (IV); however, reaction with KAuCl4produces the monodentate complex trichlorido(2-phenyl-1,10-phenanthroline-κN10)gold(III), [AuCl3(C18H12N2)], (VI). Dichlorido(2-phenyl-1,10-phenanthroline-κ2N,N′)copper(II), [CuCl2(C18H12N2)], (VII), results from the reaction of CuCl2·2H2O and (I), in which the CuIIcenter adopts a tetrahedrally distorted square-planar geometry. The pendent phenyl ring twists to a bisecting position relative to the phenanthroline plane. The square-planar PdIIcomplex, bromido[2-(phenanthrolin-2-yl)phenyl-κ3C1,N,N′]palladium(II), [PdBr(C18H11N2)], (VIII), is obtained from the reaction of (I) with [PdCl2(cycloocta-1,5-diene)], followed by addition of bromine. A coplanar geometry for the pendent ring is adopted as a result of the tridentate bonding motif.


2019 ◽  
Vol 75 (10) ◽  
pp. 1389-1397
Author(s):  
Farzin Marandi ◽  
Keyvan Moeini ◽  
Harald Krautscheid

Two complexes of 5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine (PPTA), namely (ethanol-κO)bis(nitrato-κO)[5-phenyl-3-(pyridin-2-yl-κN)-1,2,4-triazine-κN 2]copper(II), [Cu(NO3)2(C14H10N4)(C2H6O)] or [Cu(NO3)2(PPTA)(EtOH)] (1), and bis[μ-5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine]-κ3 N 1:N 2,N 3;κ3 N 2,N 3:N 1-bis[(nitrato-κO)silver(I)], [Ag2(NO3)2(C14H10N4)2] or [Ag2(NO3)2(μ-PPTA)2] (2), were prepared and characterized by elemental analysis, FT–IR spectroscopy and single-crystal X-ray diffraction. The X-ray structure analysis of 1 revealed a copper complex with square-pyramdial geometry containing two O-donor nitrate ligands along with an N,N′-donor PPTA ligand and one O-donor ethanol ligand. In the binuclear structure of 2, formed by the bridging of two PPTA ligands, each Ag atom has an AgN3O environment and square-planar geometry. In addition to the four dative interactions, each Ag atom interacts with two O atoms of two nitrate ligands on adjacent complexes to complete a pseudo-octahedral geometry. Density functional theory (DFT) calculations revealed that the geometry around the Cu and Ag atoms in 1 opt and 2 opt (opt is optimized) for an isolated molecule is the same as the experimental results. In 1, O—H...O hydrogen bonds form R 1 2(4) motifs. In the crystal network of the complexes, in addition to the hydrogen bonds, there are π–π stacking interactions between the aromatic rings (phenyl, pyridine and triazine) of the ligands on adjacent complexes. The ability of the ligand and complexes 1 and 2 to interact with ten selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies. The results show that the studied compounds can interact with proteins better than doxorubicin (except for TrxR and Top II).


2007 ◽  
Vol 72 (5-6) ◽  
pp. 649-665 ◽  
Author(s):  
M. Fernanda N. N. Carvalho ◽  
Ana S. D. Ferreira ◽  
João L. Ferreira da Silva ◽  
Luís F. Veiros

3-Hydrazonocamphor, 3-(RR1NN)C10H14O (R = Me, R1 = H), undergoes intramolecular hydrogen bridging by coordination to platinum or palladium. This effect is evidenced by considerable decrease in the ν(C=O) frequency (compared to the free ligand) in the IR spectra of the complexes [MCl2L2] (M = Pd, Pt; L = 3-(RR1NN)C10H14O) as well as by the magnetic non- equivalence of the two ligands, as revealed by 13C NMR. DFT calculations indicate that coordination of 3-(Me(H)NN)C10H14O promotes E/Z isomerization of the hydrazono group of the ligand, inducing formation of intramolecular hydrogen bonding and corresponding stabilization of the complex. Characterization of the complexes [MCl2L2] (M = Pt; L: R, R1 = Me (1), R = Me, R1 = H (2) and M = Pd; L: R = Me, R1 = H (3)) was performed by analytical and spectroscopic techniques. Redox properties of the 3-hydazonocamphors and their complexes were studied by cyclic voltammetry. The structure of trans-[PtCl2{3-(Me2NN)C10H14O}2] was determined by single-crystal X-ray diffraction analysis. The complex has square-planar geometry and crystallizes in the tetragonal P43 space group.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 607 ◽  
Author(s):  
Yin-Xia Sun ◽  
Ying-Qi Pan ◽  
Xin Xu ◽  
Yang Zhang

An unprecedented dinuclear CuII complex, [Cu2(L2)2], derived from a salamo-like chelating ligand H2L2, was produced by the cleavage of a newly synthesized, half-salamo-like ligand HL1 (2-[O-(1-ethyloxyamide)]oxime-3,5-dichloro-phenol). This was synthesized and characterized by elemental analyses, IR, UV–Vis and fluorescent spectra, single crystal X-ray diffraction analysis, and Hirshfeld surface analysis. X-ray crystallographic analysis indicated that the two CuII (Cu1 and Cu2) ions bore different (N2O3 and N2O2) coordination environments, the penta-coordinated Cu1 ion possessed a slightly twisted tetragonal pyramid geometry with the τ value τ = 0.004, and the tetra-coordinated Cu2 ion showed a slightly twisted square planar geometry. Interestingly, one oxime oxygen atom participated in the coordination reported previously. Moreover, an infinite two-dimensional layered supramolecular network was formed. Compared with HL1, the CuII complex possessed the characteristic of fluorescence quenching.


2017 ◽  
Vol 72 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Madhusudan Nandy ◽  
Debnath Saha ◽  
Corrado Rizzoli ◽  
Shyamapada Shit

AbstractA new trinuclear heterometallic complex, [(CuL)Na(CuL)]·ClO4 (1), has been prepared using a Schiff base, H2L (where H2L=N,N′-(1,2-phenylene)-bis(3-methoxysalicylideneimine) and characterized by elemental analysis, Fourier transform infra-red (FT-IR) spectroscopy, UV/Vis, magnetic, electrochemical, and single crystal X-ray diffraction methods. The structure analysis reveals that two metallo-ligand [(CuL)] units are connected to each other by a sodium ion resulting in the cationic unit [(CuL)Na(CuL)]+. Both the copper(II) ions display an almost square planar geometry while the sodium ion adopts a trigonal-dodecahedral coordination geometry. The spectroscopic and other physicochemical studies are in good agreement with the crystal structure of the complex.


2020 ◽  
Vol 76 (9) ◽  
pp. 932-946
Author(s):  
Reinaldo Atencio ◽  
Gustavo Chacón ◽  
Lisbeth Mendoza ◽  
Teresa González ◽  
Julia Bruno-Colmenarez ◽  
...  

A series of related acetylacetonate–carbonyl–rhodium compounds substituted by functionalized phosphines has been prepared in good to excellent yields by the reaction of [Rh(acac)(CO)2] (acac is acetylacetonate) with the corresponding allyl-, cyanomethyl- or cyanoethyl-substituted phosphines. All compounds were fully characterized by 31P, 1H, 13C NMR and IR spectroscopy. The X-ray structures of (acetylacetonato-κ2 O,O′)(tert-butylphosphanedicarbonitrile-κP)carbonylrhodium(I), [Rh(C5H7O2)(CO)(C8H13N2)] or [Rh(acac)(CO)(tBuP(CH2CN)2}] (2b), (acetylacetonato-κ2 O,O′)carbonyl[3-(diphenylphosphanyl)propanenitrile-κP]rhodium(I), [Rh(C5H7O2)(C15H14N)(CO)] or [Rh(acac)(CO){Ph2P(CH2CH2CN)}] (2h), and (acetylacetonato-κ2 O,O′)carbonyl[3-(di-tert-butylphosphanyl)propanenitrile-κP]rhodium(I), [Rh(C5H7O2)(C11H22N)(CO)] or [Rh(acac)(CO){tBu2P(CH2CH2CN)}] (2i), showed a square-planar geometry around the Rh atom with a significant trans influence over the acetylacetonate moiety, evidenced by long Rh—O bond lengths as expected for poor π-acceptor phosphines. The Rh—P distances displayed an inverse linear dependence with the coupling constants J P-Rh and the IR ν(C[triple-bond]O) bands, which accounts for the Rh—P electronic bonding feature (poor π-acceptors) of these complexes. A combined study from density functional theory (DFT) calculations and an evaluation of the intramolecular H...Rh contacts from X-ray diffraction data allowed a comparison of the conformational preferences of these complexes in the solid state versus the isolated compounds in the gas phase. For 2b, 2h and 2i, an energy-framework study evidenced that the crystal structures are mainly governed by dispersive energy. In fact, strong pairwise molecular dispersive interactions are responsible for the columnar arrangement observed in these complexes. A Hirshfeld surface analysis employing three-dimensional molecular surface contours and two-dimensional fingerprint plots indicated that the structures are stabilized by H...H, C...H, H...O, H...N and H...Rh intermolecular interactions.


Author(s):  
Julekha A. Shaikh

The synthesis, spectroscopic and X – Ray Diffraction studies of some Pd(II) complexes with bidentate Schiff bases are reported here. These Schiff bases were derived by condensing aldehydes like 2-hydroxy-1-naphthaldehyde, 5-chloro salicyladehyde with amines like 4-nitro aniline, 4-methyl aniline and 4-methoxy aniline. The complexes were characterized on the basis of elemental analysis, molar conductivity, spectral (IR, 1H and electronic) as well as thermal analysis. All the Pd (II) complexes exhibit square planar geometry with 1:2 (metal : ligand) stoichiometry. The X- ray diffraction studies suggest monoclinic crystal system for these complexes.


Sign in / Sign up

Export Citation Format

Share Document