Polymerization inspired synthesis of MnO@carbon nanowires with long cycling stability for lithium ion battery anodes: growth mechanism and electrochemical performance

2021 ◽  
Author(s):  
Fang Zhou ◽  
Shuangfu Li ◽  
Kai Han ◽  
Yajuan Li ◽  
You-Nian Liu

MnO@carbon (MnO@C) nanowires are synthesized via the polymerization inspired in situ growth of [Mn–NTA] (NTA = nitrilotriacetic acid) precursor nanowires with a subsequent heat treatment process.

2011 ◽  
Vol 284-286 ◽  
pp. 273-276
Author(s):  
Li Sheng Zhong ◽  
Yun Hua Xu ◽  
Xin Cheng Liu ◽  
Fang Xia Ye ◽  
Jing Lai Tian ◽  
...  

The method of infiltration casting plus heat treatment process employing chromium wires and cast iron applied to in-situ synthesized (Fe,Cr)7C3 particulates bundle reinforced iron matrix composites. The phase analysis, microstructure, microhardness and wear-resistance of composite were observed and measured. The results show that it is possible to fabricate (Fe,Cr)7C3 particulates bundle reinforced iron matrix composite produced by this technology, and a special structure which called particulates bundle was fabricated. (Fe,Cr)7C3 particulates bundle were distributed in the forms of granular, lath-shaped and hexagon-shaped in the particulates bundle. The macrohardness of particulates bundle was 52 HRC, and the relative wear resistance of the composites is 2.3—23 times higher than that of the cast iron.


2011 ◽  
Vol 409 ◽  
pp. 660-665 ◽  
Author(s):  
Dagmar Carmele ◽  
Thomas Rieger ◽  
Klaus Herrmann ◽  
Stephan Meyer ◽  
Thomas Lippmann ◽  
...  

Innovative steel materials of the third generation of advanced high-strength steel (AHSS) are based on complex multiphase microstructures on a submicron scale, which are adjusted in a heat treatment procedure. Established methods for microstructural characterization are usually applied after the heat treatment process (ex-situ) at room temperature and comprise amongst others X-ray analysis based on laboratory tubes with photon energies of several keV. The corresponding penetration depths are on the micron scale. Additionally, the results may be affected by the metallographic preparation process. Using very hard synchrotron X-ray radiation with photon energies of up to 100 keV, penetration depths in the millimetre range are realized and macroscopic volumes (mm³) can be investigated. Furthermore the photon flux of synchrotron sources is several orders of magnitude higher compared to laboratory tubes. Consequently in-situ measurements during a heat treatment process can be performed. Using the example of the standardized multiphase TRIP steel HCT690T, a microstructural investigation with high energy synchrotron X-ray radiation is discussed and compared to established diffraction methods using Co-and Cu-Kα-radiation. In-situ diffraction measurements during a heat treatment are exemplarily shown.


2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

Author(s):  
Karanbir Singh ◽  
Aditya Chhabra ◽  
Vaibhav Kapoor ◽  
Vaibhav Kapoor

This study is conducted to analyze the effect on the Hardness and Micro Structural Behaviour of three Sample Grades of Tool Steel i.e. EN-31, EN-8, and D3 after Heat Treatment Processes Such As Annealing, Normalizing, and Hardening and Tempering. The purpose of Selecting Tool Steel is Because Tool Steel is Mostly Used in the Manufacturing Industry.This study is based upon the empirical study which means it is derived from experiment and observation rather than theory.


2011 ◽  
Vol 339 ◽  
pp. 342-348
Author(s):  
Hai Jun Tang ◽  
Hong Yu Yao

The paper presents a failure analysis on a counterweight assembly installed on crank shaft which resulted in an in-flight shutdown of a piston aeroengine. The counterweight assembly failure includes counterweight block material loss and fractured washer which is the most crucial part for in-flight shutdown in this type of aeroengine. Macro observation, fractography analysis, metallography analysis and hardness test were conducted on the failed counterweight assembly. The result shows that failure mechanism of counterweight block and washer is fatigue. The washer failure is likely due to inappropriate heat treatment process and continuous impact in flight by slightly tilted roller. Counterweight material loss is attributed to stress concentration, low structure strength and impact came from the tilted roller. Finally some safety suggestion on design and maintenance is given.


Sign in / Sign up

Export Citation Format

Share Document