Increasing the output charge quantity of triboelectric nanogenerators via frequency multiplication with a multigap-structured friction layer

2020 ◽  
Vol 13 (7) ◽  
pp. 2069-2076
Author(s):  
Nuanyang Cui ◽  
Cuihua Dai ◽  
Jinmei Liu ◽  
Long Gu ◽  
Rui Ge ◽  
...  

The multi-gap structure of friction layer increases the amount of triboelectric charge density and the output current of a triboelectric nanogenerator (TENG).

Nanoscale ◽  
2017 ◽  
Vol 9 (27) ◽  
pp. 9668-9675 ◽  
Author(s):  
Jia Jia Shao ◽  
Wei Tang ◽  
Tao Jiang ◽  
Xiang Yu Chen ◽  
Liang Xu ◽  
...  

A multi-dielectric-layered vertical contact-separation mode TENG through a corona discharge approach results in outstanding output performances, i.e., a high surface charge density of 283 μC m−2 and excellent cycling stability (92.6% retention after 200 000 cycles).


Author(s):  
Zixi Chen ◽  
Yule Cao ◽  
Weifeng Yang ◽  
Lin An ◽  
Hongwei Fan ◽  
...  

Embedding active fillers into polymers to construct composite materials is an effective way to enhance the output performance of triboelectric nanogenerators (TENGs). Among various kinds of fillers, 2D fillers showed...


2021 ◽  
Author(s):  
Yong-Mei Wang ◽  
Xinxin Zhang ◽  
Dingyi Yang ◽  
Liting Wu ◽  
Jiaojiao Zhang ◽  
...  

Abstract The high porosity, controllable size, high surface area, and chemical versatility of a metal-organic framework (MOF) enable it a good material for a triboelectric nanogenerator (TENG), and some MOFs have been incorporated in the fabrication of TENGs. However, the understanding of effects of MOFs on the energy conversion of a TENG is still lacking, which inhibits the improvement of the performance of MOF-based TENGs. Here, UiO-66-NH2 MOFs were found to significantly increase the power of a TENG and the mechanism was carefully examined. The electron-withdrawing ability of Zr-based UiO-66-family MOFs was enhanced by designing the amino functionalized 1,4-terephthalic acid (1,4-BDC) as ligand. The chemically modified UiO-66-NH2 was found to increase the surface roughness and surface potential of a composite film with MOFs embedded in polydimethylsiloxane (PDMS) matrix. Thus the total charges due to the contact electrification increased significantly. The composite-based TENG was found to be very durable and its output voltage and current were 4 times and 60 times higher than that of a PDMS-based TENG. This work revealed an effective strategy to design MOFs with excellent electron-withdrawing abilities for high-performance TENGs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Huamei Wang ◽  
Liang Xu ◽  
Yu Bai ◽  
Zhong Lin Wang

2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


2020 ◽  
Vol 10 (10) ◽  
pp. 1904227 ◽  
Author(s):  
Jianlong Wang ◽  
Yikang Li ◽  
Zhijie Xie ◽  
Yuhong Xu ◽  
Jianwen Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document