The processing-module assembly strategy for continuous bio-oxidation of furan chemicals by integrated and coupled biotechnology

2021 ◽  
Vol 23 (3) ◽  
pp. 1330-1336
Author(s):  
Genlai Du ◽  
Xia Hua ◽  
Bin Xu ◽  
Huan Wang ◽  
Xin Zhou ◽  
...  

We designed a technology to combined biotechnology, chemical and electrochemical techniques to achieve furoic acid bio-production from bio-toxic furfural.

Planta Medica ◽  
2008 ◽  
Vol 74 (03) ◽  
Author(s):  
X Wang ◽  
H Sun ◽  
H Lv ◽  
N Zhang ◽  
F Geng ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Chem Int

The anti-corrosive properties of sulphadoxine + pyrimethamine (S+P) on the corrosion of pipeline steel in acidic environment were investigated using electrochemical techniques. The results obtained showed an excellent inhibition efficiency which increased with increase in inhibitor concentration. The corrosion inhibition efficiency increased up to 99.04 % at 0.01M S+P and decreased with rise in temperature down to 85.93 % at 333 K and 0.01 M S+P, suggesting a physiosorptive mechanism of adsorption. Also the adsorption data was fitted into Langmuir and Temkin adsorption isotherms, while the inhibitive action was shown to proceed by mixed inhibition mode.


2018 ◽  
Vol 69 (1) ◽  
pp. 112-115
Author(s):  
Ana Maria Popescu ◽  
Virgil Constantin

The cathodic behavior of Ce3+ ions in LiF-NaF-BaF2, LiF-NaF-NaCl and NaCl-KCl molten salts at 730� C has been studied using different electrochemical techniques. The decomposition potential (Ed) and the cathodic overvoltage were determined by introducing NaCeF4 as electrochemical active species using steady-state potential-current curves recorded under galvanostatic conditions. The values of |Ed| were 1.85 V in LiF-NaF-BaF2, 2.114 V in LiF-NaF-NaCl and 2.538 V in NaCl-KCl, respectively. It was also found that the ohmic drop potential in melt is not dependent on NaCeF4 concentration and it rises as the current intensity increases. The Tafel slopes and other kinetic parameters were calculated on the assumption that the cathodic process consisted of direct discharge of Ce3+, with no solvent-solute interaction. In order to elucidate the mechanisn of cathodic process the cyclic voltammetry technique was finally used. From the evolution of the voltammograms we conclude that the electrochemical reduction of Ce3+ ion is actually a reversible process on the molybdenum electrode and cathodic reduction of Ce3+ takes place in one single step involving three electron exchange. Our study adds to the accumulating data and confirms available results of electrodeposition of metalic cerium from molten salts using NaCeF4 as solute.


2020 ◽  
pp. 1-4
Author(s):  
CHARULATA SIVODIA ◽  
ALOK SINHA

The advancement made in biomedical industry upsurges the consumption rate of pharmaceutical drugs. The lack of proper monitoring and regulation methods leads to the unregulated discharge of pharmaceuticals in wastewater, where it can affect the aquatic organisms. Anticancer drugs are also known as cytostatic drugs mainly used for the treatment of cancer by disrupting the cell function and prevent multiplication of cancerous cell. Therefore, anticancer drugs are suspected to pose potential risk on environment by influencing mutagenic effects on the cells of aquatic organisms. An extensive research has been already made in the field of pharmaceutical removal, however their application on the removal of anticancer drugs is limited. This review paper elucidates about different electrochemical techniques for the mitigation of cytostatic drugs.


2019 ◽  
Vol 15 (4) ◽  
pp. 423-442 ◽  
Author(s):  
Mona Habibi-Kool-Gheshlaghi ◽  
Farnoush Faridbod ◽  
Mahya Karami Mosammam ◽  
Mohammad Reza Ganjali

Background: Tricyclic psychotropic drugs are defined as a tricyclic rings of the dibenzazepine group with the presence of sulfur and nitrogen atoms. They have been prescribed for antidepressive therapy over the years. Due to their medical importance, many analytical methods have been developed for their monitoring. However, benefits of electrochemical techniques such as costeffectiveness, fast, easy operation and non-destructiveness make them appropriate analytical methods for drug assays. Electrochemical determinations of pharmaceuticals require suitable working electrodes. During years, many electrodes are modified by a variety of modifiers and several sensors were developed based on them. In this regard, nanomaterials, due to their remarkable properties, are one of the most important choices. Objective: Here, the application of electroanalytical methods in the determination of electroactive tricyclic psychotropic drugs will be reviewed and the nanomaterials which are used for improvements of the working electrodes will be considered.


1985 ◽  
Vol 50 (9) ◽  
pp. 1959-1961 ◽  
Author(s):  
Giovanni Allunni Bistocchi ◽  
Giovanni De Meo ◽  
Mauro Pedini ◽  
Adolfo Ricci ◽  
Pierre Jacquignon

5-Fluoro-2-(5-nitrofuryl)benzimidazole (I) was synthesized from 4-fluoro-1,2-diaminobenzene and 5-nitro-2-furoic acid using ethyl polyphosphate as cyclization reagent. N-Ethyl derivative was isolated as by-product in substantial amount.


Sign in / Sign up

Export Citation Format

Share Document